Astrophysics and Space Science

, Volume 336, Issue 1, pp 157–162 | Cite as

Progress in development of HEDP capabilities in FLASH’s Unsplit Staggered Mesh MHD solver

  • D. Lee
  • G. Xia
  • C. Daley
  • A. Dubey
  • S. Gopal
  • C. Graziani
  • D. Lamb
  • K. Weide
Original Article

Abstract

FLASH is a publicly available astrophysical community code designed to solve highly compressible multi-physics reactive flows. We are adding capabilities to FLASH that will make it an open science code for the academic HEDP community. Among many important numerical requirements, we consider the following features to be important components necessary to meet our goals for FLASH as an HEDP open toolset. First, we are developing computationally efficient time-stepping integration methods that overcome the stiffness that arises in the equations describing a physical problem when there are disparate time scales. To this end, we are adding two different time-stepping schemes to FLASH that relax the time step limit when diffusive effects are present: an explicit super-time-stepping algorithm (Alexiades et al. in Com. Num. Mech. Eng. 12:31–42, 1996) and a Jacobian-Free Newton-Krylov implicit formulation. These two methods will be integrated into a robust, efficient, and high-order accurate Unsplit Staggered Mesh MHD (USM) solver (Lee and Deane in J. Comput. Phys. 227, 2009). Second, we have implemented an anisotropic Spitzer-Braginskii conductivity model to treat thermal heat conduction along magnetic field lines. Finally, we are implementing the Biermann Battery term to account for spontaneous generation of magnetic fields in the presence of non-parallel temperature and density gradients.

Keywords

High-energy-density physics Radiation-hydrodynamics FLASH USM-MHD JFNK implicit solver Heat conduction Biermann battery effects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexiades, V., Amiez, A., Gremaud, E.: Com. Num. Mech. Eng. 12, 31–42 (1996) MATHCrossRefGoogle Scholar
  2. Arora, M., Roe, P.: J. Comput. Phys. 130, 25–40 (1997) MathSciNetADSMATHCrossRefGoogle Scholar
  3. Balsara, D., Spicer, D.: J. Comput. Phys. 149, 270–292 (1999) MathSciNetADSMATHCrossRefGoogle Scholar
  4. Dubey, A., Antypas, K., Ganapathy, M.K., Reid, L.B., Riley, K.M., Sheeler, D., Siegel, A., Weide, K.: Parallel Comput. 35(10–11), 512–522 (2009) CrossRefGoogle Scholar
  5. Evans, C., Hawley, J.: Astrophys. J. 332, 659–677 (1988) ADSCrossRefGoogle Scholar
  6. Fryxell, B., Olson, K., Ricker, P., Timmes, F.X., Zingale, M., Lamb, D.Q., MacNeice, P., Rosner, R., Truran, J.W., Tufo, H.: Astrophys. J. Suppl. Ser. 131, 273–334 (2000) ADSCrossRefGoogle Scholar
  7. Hanawa, T., Mikami, H., Matsumoto, T.: J. Comput. Phys. 227, 7952–7976 (2007) MathSciNetADSCrossRefGoogle Scholar
  8. Jin, S., Liu, J.: J. Comput. Phys. 126, 373–389 (1996) MathSciNetADSMATHCrossRefGoogle Scholar
  9. Knoll, D.A., Keys, D.E.: J. Comput. Phys. 193, 357–397 (2004) MathSciNetADSMATHCrossRefGoogle Scholar
  10. Kulsrud, R.: Plasma Physics for Astrophysics. Princeton University Press, Princeton (2004) Google Scholar
  11. Lee, D.: In preparation (2011) Google Scholar
  12. Lee, D., Deane, A.: J. Comput. Phys. 227, 952–976 (2009) MathSciNetADSCrossRefGoogle Scholar
  13. MacNeice, P., Olson, K.M., Mobarry, C., deFainchtein, R., Packer, C.: Comput. Phys. Commun. 126, 330–354 (2000) ADSMATHCrossRefGoogle Scholar
  14. Ovtchinnikov, S., Dobrian, F., Cai, X.C., Keys, D.E.: J. Comput. Phys. 225, 1919–1936 (2007) MathSciNetADSMATHCrossRefGoogle Scholar
  15. Parrish, I.J., Stone, J.M.: Astrophys. J. 633, 334–348 (2005) ADSCrossRefGoogle Scholar
  16. Powell, K.G., Roe, P.L., Linde, T.J., Gombosi, T.I., De Zeeuw, D.L.: J. Comput. Phys. 154, 284–309 (1999) MathSciNetADSMATHCrossRefGoogle Scholar
  17. Quirk, J.: ICASE Report No 92-64 (1992) Google Scholar
  18. Rider, W., Greenough, J., Kamm, J.: J. Comput. Phys. 225, 1827–1848 (2007) MathSciNetADSMATHCrossRefGoogle Scholar
  19. Saltzman, J.: J. Comput. Phys. 115, 153–168 (1994) MathSciNetADSMATHCrossRefGoogle Scholar
  20. Spitzer, L.: Physics of Fully Ionized Gases. Wiley, New York (1962) Google Scholar
  21. Tóth, G., De Zeeuw, D.L., Gombosi, T.I., Powell, K.G.: J. Comput. Phys. 217, 722–758 (2006) MathSciNetADSMATHCrossRefGoogle Scholar
  22. Tóth, G., Ma, Y., Gombosi, T.I.: J. Comput. Phys. 227, 6967–6984 (2008) MathSciNetADSMATHCrossRefGoogle Scholar
  23. Ustyugov, S., Popov, M., Kritsuk, A., Norman, M.: J. Comput. Phys. 228, 7614–7633 (2009) MathSciNetADSMATHCrossRefGoogle Scholar
  24. Woodward, P., Colella, P.: J. Comput. Phys. 54, 115–173 (1984) MathSciNetADSMATHCrossRefGoogle Scholar
  25. Xu, H., O’Shea, B., Collins, D.C., Norman, M., Li, H., Li, S.: Astrophys. J. 688, L57–L60 (2008) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • D. Lee
    • 1
  • G. Xia
    • 1
  • C. Daley
    • 1
  • A. Dubey
    • 1
  • S. Gopal
    • 1
  • C. Graziani
    • 1
  • D. Lamb
    • 1
  • K. Weide
    • 1
  1. 1.ASC Flash Center, Astronomy & AstrophysicsUniversity of ChicagoChicagoUSA

Personalised recommendations