Astrophysics and Space Science

, Volume 336, Issue 1, pp 21–26 | Cite as

Using intense lasers to simulate aspects of accretion discs and outflows in astrophysics

Original Article


It is shown that some aspects of the accretion disc physics can be experimentally simulated with the use of an array of properly directed plasma jets created by intense laser beams. For the laser energy of 1 to 3 kJ, one can create a quasi-planar disc with the Reynolds number exceeding 104 and magnetic Reynolds number in the range of 10–100. The way of seeding the disc with the magnetic field by using a cusp magnetic configuration is described.


Accretion discs Laboratory astrophysics Turbulence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowicz, M., Bjornsson, G., Pringle, J.E. (eds.): Theory of Black Hole Accretion Disks. Cambridge University Press, Cambridge (1998) Google Scholar
  2. Balbus, S.A.: Enhanced angular momentum transport in accretion disks. Annu. Rev. Astron. Astrophys. 41, 555–597 (2003) ADSCrossRefGoogle Scholar
  3. Book, D.L.: NRL Plasma Formulary. Naval Research Laboratory (1987) Google Scholar
  4. Braginski, S.I.: In: Reviews of Plasma Physics, vol. 1, p. 205. Consultants Bureau, New York (1965) Google Scholar
  5. Farley, D.R., Estabrook, K.G., Glendinning, S.G., et al.: Phys. Rev. Lett. 83, 1982 (1999) ADSCrossRefGoogle Scholar
  6. Foster, J.M., Wilde, B.H., Rosen, P.A., et al.: Phys. Plasmas 9, 2251 (2002) ADSCrossRefGoogle Scholar
  7. Foster, J.M., Wilde, B.H., Rosen, P.A., et al.: Astrophys. J. 634, L77 (2005) ADSCrossRefGoogle Scholar
  8. Frank, J., King, A., Raine, D.: Accretion Power in Astrophysics. Cambridge University Press, Cambridge (2002) Google Scholar
  9. Gotchev, O.V., Knauer, J.P., Chang, P.Y., et al.: Rev. Sci. Instrum. 80, 043504 (2009) ADSCrossRefGoogle Scholar
  10. Gregory, C.D., Loupias, B., Waugh, J., et al.: Plasma Phys. Control. Fusion 50, 124039 (2008) ADSCrossRefGoogle Scholar
  11. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Pergamon, Oxford (1987) MATHGoogle Scholar
  12. Li, C.K., Seguin, F.H., Frenje, J.A., et al.: Phys. Plasmas 16, 056304 (2009) ADSCrossRefGoogle Scholar
  13. Nicolai, P., Tikhonchuk, V.T., Kasperczuk, A., et al.: Phys. Plasmas 13, 062701 (2006) ADSCrossRefGoogle Scholar
  14. Remington, B.A., Drake, R.P., Ryutov, D.D.: Rev. Mod. Phys. 78, 755 (2006) ADSCrossRefGoogle Scholar
  15. Ryutov, D.D.: Using plasma jets to simulate galactic outflows. In: Plasma Jet Workshop, Los Alamos, Jan. 24–25 (2008) Google Scholar
  16. Ryutov, D.D., Drake, R.P., Kane, J., et al.: Astrophys. J. 518, 821 (1999) ADSCrossRefGoogle Scholar
  17. Shigemori, K., Kodama, R., Farley, D.R., et al.: Phys. Rev. E 62, 8838 (2000) ADSCrossRefGoogle Scholar
  18. Snavely, R.A., Key, M.H., Hatchett, S.P., et al.: Phys. Rev. Lett. 85, 2945 (2000) ADSCrossRefGoogle Scholar
  19. Thio, Y.C.F.: J. Phys. Conf. Ser. 112, 042084 (2008) ADSCrossRefGoogle Scholar
  20. Thompson, M.: An Introduction to Astrophysical Fluid Dynamics. Imperial College Press, London (2006); Chaps. 8–9 MATHGoogle Scholar
  21. Tikhonchuk, V.T., Nicolai, P., Ribeyre, X., et al.: Plasma Phys. Control. Fusion 50, 124056 (2008) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Lawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations