Astrophysics and Space Science

, Volume 331, Issue 2, pp 397–408 | Cite as

Redshift evolution of angular diameters and surface brightness: how rigid are galactic measuring rods?

  • Roman Tomaschitz


The effect of a cosmic time variation of Newton’s constant on galactic angular diameters, linear size, apparent magnitude, and surface brightness is investigated. The redshift scaling of the gravitational constant is proportional to the Hubble parameter, derived from the constancy of a moderate dimensionless ratio of fundamental constants, and manifested in galactic linear-size evolution. The latter is demonstrated by fitting the angular size–redshift relation to spectroscopically and photometrically selected samples of high-redshift rotators. The intrinsic luminosity evolution of the rotators and their magnitude–redshift and surface brightness–redshift relations are studied. The galactic luminosity scales with a power of the Hubble parameter, and the scaling exponent is inferred from a moderate dimensionless ratio involving the gravitational constant, the Galactic luminosity, and the velocity of the Galaxy in the microwave background. The fits are performed with a cosmic expansion factor derived from paleoplanetary surface temperatures. This expansion factor is tested by comparing the corresponding redshift evolution of the angular-size distance to the distance estimates of two samples of galaxy clusters.


Time variation of the gravitational constant in Robertson–Walker cosmology Galactic linear-size evolution Angular diameter–redshift relation Distance moduli and Hubble diagram of high-redshift rotators Surface brightness–redshift relation Galactic luminosity evolution and Tolman test 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barthel, P.D., Miley, G.K.: Evolution of radio structure in quasars—a new probe of protogalaxies? Nature 333, 319 (1988) CrossRefADSGoogle Scholar
  2. Blundell, K.M., Rawlings, S., Willott, C.J.: The nature and evolution of classical double radio sources from complete samples. Astron. J. 117, 677 (1999) CrossRefADSGoogle Scholar
  3. Bonamente, M., et al.: Determination of the cosmic distance scale from Sunyaev–Zel’dovich effect and Chandra X-ray measurements of high-redshift galaxy clusters. Astrophys. J. 647, 25 (2006) CrossRefADSGoogle Scholar
  4. Buchalter, A., et al.: Constraining Ω0 with the angular size–redshift relation of double-lobed quasars in the FIRST survey. Astrophys. J. 494, 503 (1998) CrossRefADSGoogle Scholar
  5. Dabrowski, Y., Lasenby, A., Saunders, R.: Testing the angular-size versus redshift relation with compact radio sources. Mon. Not. R. Astron. Soc. 277, 753 (1995) ADSGoogle Scholar
  6. De Filippis, E., et al.: Measuring the three-dimensional structure of galaxy clusters. I. Application to a sample of 25 clusters. Astrophys. J. 625, 108 (2005) CrossRefADSGoogle Scholar
  7. Dirac, P.A.M.: The cosmological constants. Nature 139, 323 (1937) CrossRefADSzbMATHGoogle Scholar
  8. Dyson, F.J.: The fundamental constants and their time variation. In: Salam, A., Wigner, E.P. (eds.) Aspects of Quantum Theory. Cambridge University Press, Cambridge (1972) Google Scholar
  9. Gallagher, J.S., et al.: Supernovae in early-type galaxies: directly connecting age and metallicity with Type Ia luminosity. Astrophys. J. 685, 752 (2008) CrossRefADSGoogle Scholar
  10. Gough, D.O.: Solar interior structure and luminosity variations. Solar Phys. 74, 21 (1981) CrossRefADSGoogle Scholar
  11. Guenther, D.B., Krauss, L.M., Demarque, P.: Testing the constancy of the gravitational constant using helioseismology. Astrophys. J. 498, 871 (1998) CrossRefADSGoogle Scholar
  12. Gurvits, L.I., Kellermann, K.I., Frey, S.: The “angular size–redshift” relation for compact radio structures in quasars and radio galaxies. Astron. Astrophys. 342, 378 (1999) ADSGoogle Scholar
  13. Holanda, R.F.L., Lima, J.A.S., Ribeiro, M.B.: Testing the distance-duality relation with galaxy clusters and Type Ia supernovae. Astrophys. J. 722, L233 (2010) CrossRefADSGoogle Scholar
  14. Kapahi, V.K.: Redshift and luminosity dependence of the linear sizes of powerful radio galaxies. Astron. J. 97, 1 (1989) CrossRefADSGoogle Scholar
  15. Kolachevsky, N., et al.: Testing the stability of the fine structure constant in the laboratory. Space Sci. Rev. 148, 267 (2009) CrossRefADSGoogle Scholar
  16. Komatsu, E., et al.: Seven-year Wilkinson Microwave Anisotropy Probe observations: cosmological interpretation. Astrophys. J. Suppl. (2010). arXiv:1001.4538
  17. La Barbera, F., et al.: On the invariant distribution of galaxies in the r e−〈μe plane out to z=0.64. Astrophys. J. 595, 127 (2003) CrossRefADSGoogle Scholar
  18. Lacy, M., et al.: Optical spectroscopy of two overlapping, flux-density-limited samples of radio sources in the North Ecliptic Cap, selected at 38 and 151 MHz. Mon. Not. R. Astron. Soc. 308, 1096 (1999) CrossRefADSGoogle Scholar
  19. Lubin, L.M., Sandage, A.: The Tolman surface brightness test for the reality of the expansion. IV. A measurement of the Tolman signal and the luminosity evolution of early-type galaxies. Astron. J. 122, 1048 (2001) ADSGoogle Scholar
  20. Marinoni, C., et al.: Geometrical tests of cosmological models. III. The cosmology-evolution diagram at z=1. Astron. Astrophys. 478, 71 (2008) CrossRefADSzbMATHGoogle Scholar
  21. Mason, B.S., Myers, S.T., Readhead, A.C.S.: A measurement of H 0 from the Sunyaev–Zeldovich effect. Astrophys. J. 555, L11 (2001) CrossRefADSGoogle Scholar
  22. Müller, J., Biskupek, L.: Variations of the gravitational constant from lunar laser ranging data. Class. Quantum Gravity 24, 4533 (2007) CrossRefzbMATHGoogle Scholar
  23. Nakamura, K., et al.: Review of particle physics. J. Phys. G 37, 075021 (2010) CrossRefADSGoogle Scholar
  24. Neeser, M., et al.: The linear-size evolution of classical double radio sources. Astrophys. J. 451, 76 (1995) CrossRefADSGoogle Scholar
  25. Nilsson, K., et al.: On the redshift–apparent size diagram of double radio sources. Astrophys. J. 413, 453 (1993) CrossRefADSGoogle Scholar
  26. Oort, M.J.A., Katgert, P., Windhorst, R.A.: A direct determination of linear size evolution of elliptical radio galaxies. Nature 328, 500 (1987) CrossRefADSGoogle Scholar
  27. Pahre, M.A., Djorgovski, S.G., de Carvalho, R.R.: A Tolman surface brightness test for universal expansion and the evolution of elliptical galaxies in distant clusters. Astrophys. J. 456, L79 (1996) CrossRefADSGoogle Scholar
  28. Percival, W.J., et al.: Baryon acoustic oscillations in the Sloan Digital Sky Survey Data Release 7 galaxy sample. Mon. Not. R. Astron. Soc. 401, 2148 (2010) CrossRefADSGoogle Scholar
  29. Reese, E.D., et al.: Determining the cosmic distance scale from interferometric measurements of the Sunyaev–Zeldovich effect. Astrophys. J. 581, 53 (2002) CrossRefADSGoogle Scholar
  30. Reid, B.A., et al.: Cosmological constraints from the clustering of the Sloan Digital Sky Survey DR7 luminous red galaxies. Mon. Not. R. Astron. Soc. 404, 60 (2010) CrossRefADSGoogle Scholar
  31. Rosenband, T., et al.: Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science 319, 1808 (2008) CrossRefADSGoogle Scholar
  32. Sagan, C., Chyba, C.: The early faint Sun paradox: organic shielding of ultraviolet-labile greenhouse gases. Science 276, 1217 (1997) CrossRefADSGoogle Scholar
  33. Saintonge, A., et al.: Geometrical tests of cosmological models. II. Calibration of rotational widths and disc scaling relations. Astron. Astrophys. 478, 57 (2008) CrossRefADSGoogle Scholar
  34. Sandage, A.: The Tolman surface brightness test for the reality of the expansion. V. Provenance of the test and a new representation of the data for three remote HST galaxy clusters. Astron. J. 139, 728 (2010) CrossRefADSGoogle Scholar
  35. Sandage, A., et al.: The Hubble constant: a summary of the Hubble Space Telescope program for the luminosity calibration of Type Ia supernovae by means of Cepheids. Astrophys. J. 653, 843 (2006) CrossRefADSGoogle Scholar
  36. Sandage, A., Reindl, B., Tammann, G.A.: The linearity of the cosmic expansion field from 300 to 30.000 km s−1 and the bulk motion of the Local Supercluster with respect to the CMB. Astrophys. J. 714, 1441 (2010) CrossRefADSGoogle Scholar
  37. Setare, M.R., Jamil, M.: Holographic dark energy with varying gravitational constant in Hořava–Lifshitz cosmology. J. Cosmol. Astropart. Phys. 02, 010 (2010) CrossRefADSMathSciNetGoogle Scholar
  38. Shelkovnikov, A., et al.: Stability of the proton-to-electron mass ratio. Phys. Rev. Lett. 100, 150801 (2008) CrossRefADSGoogle Scholar
  39. Singal, A.K.: Cosmic evolution of the physical sizes of extragalactic radio sources and their luminosity–size correlation. Mon. Not. R. Astron. Soc. 233, 87 (1988) ADSGoogle Scholar
  40. Singal, A.K.: Cosmic evolution and luminosity dependence of the physical sizes of powerful radio galaxies and quasars. Mon. Not. R. Astron. Soc. 263, 139 (1993) ADSGoogle Scholar
  41. Sneden, C., Cowan, J.J., Gallino, R.: Neutron-capture elements in the early Galaxy. Annu. Rev. Astron. Astrophys. 46, 241 (2008) CrossRefADSGoogle Scholar
  42. Stritzinger, M., et al.: Constraints on the progenitor systems of Type Ia supernovae. Astron. Astrophys. 450, 241 (2006) CrossRefADSGoogle Scholar
  43. Teller, E.: On the change of physical constants. Phys. Rev. 73, 801 (1948) CrossRefADSGoogle Scholar
  44. Tomaschitz, R.: Ether, luminosity and galactic source counts. Astrophys. Space Sci. 259, 255 (1998) CrossRefADSzbMATHGoogle Scholar
  45. Tomaschitz, R.: Cosmic time variation of the gravitational constant. Astrophys. Space Sci. 271, 181 (2000a) CrossRefADSzbMATHGoogle Scholar
  46. Tomaschitz, R.: Faint young Sun, planetary paleoclimates and varying fundamental constants. Int. J. Theor. Phys. 44, 195 (2005) CrossRefzbMATHGoogle Scholar
  47. Tomaschitz, R.: Superluminal cascade spectra of TeV γ-ray sources. Ann. Phys. 322, 677 (2007) CrossRefADSzbMATHGoogle Scholar
  48. Tomaschitz, R.: Effect of a varying gravitational constant on the SN Ia Hubble diagram, AGN luminosity evolution, and X-ray source counts. Astrophys. Space Sci. 325, 259 (2010) CrossRefADSzbMATHGoogle Scholar
  49. Tomaschitz, R.: Tachyons, Lamb shifts and superluminal chaos. Eur. Phys. J. B 17, 523 (2000b) CrossRefMathSciNetADSGoogle Scholar
  50. Tomaschitz, R.: Conformal tachyons. Int. J. Mod. Phys. A 15, 3019 (2000c) MathSciNetADSzbMATHGoogle Scholar
  51. Tomaschitz, R.: Superluminal radiation by uniformly moving charges. Physica A 320, 329 (2003) CrossRefMathSciNetADSGoogle Scholar
  52. Varshalovich, D.A., et al.: Current status of the problem of cosmological variability of fundamental physical constants. In: Karshenboim, S.G., Smirnov, V.B. (eds.) Precision Physics of Simple Atomic Systems. Lecture Notes in Physics, vol. 627. Springer, Berlin (2003) CrossRefGoogle Scholar
  53. Williams, J.G., Turyshev, S.G., Boggs, D.H.: Progress in lunar laser ranging tests of relativistic gravity. Phys. Rev. Lett. 93, 261101 (2004) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of PhysicsHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations