Astrophysics and Space Science

, Volume 336, Issue 1, pp 67–74 | Cite as

Neutron stars and the dense matter equation of state

  • James M. LattimerEmail author
Original Article


Neutron stars provide a unique laboratory with which to study cold, dense matter. The observational quantities of primary astrophysics interest are the maximum mass and the typical radius of a neutron star. These quantities are related to the relative stiffness of neutron-rich matter at supernuclear densities and the density dependence of the nuclear symmetry energy near the nuclear saturation density. The measurements of these nuclear properties via nuclear systematics and structure, heavy-ion collisions and parity-violating electron scattering from neutron-rich nuclei, are discussed. Several new observations, including mass measurements of binary pulsars and a confirmed distance determination for a nearby cooling neutron star, will be summarized. Additionally addressed will be observations of thermal emissions from cooling neutron stars in globular clusters and thermonuclear explosions from accreting stars. It will be demonstrated how this astrophysical data is shedding light on the pressure-density relation of extremely dense matter.


Neutron stars Equations of state X-ray bursts 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barziv, O., Karper, L., van Kerkwijk, M.H., Telging, J.H., van Paradijs, J.: Astron. Astrophys. Suppl. Ser. 377, 925 (2001) Google Scholar
  2. Brown, E.F., Bildsten, L., Rutledge, R.E.: Astrophys. J. Lett. 504, L95 (1998) ADSCrossRefGoogle Scholar
  3. Colo, G., Van Giai, N., Meyer, J., Bennaceur, K., Bonche, P.: Phys. Rev. C 70, 024307 (2004) ADSCrossRefGoogle Scholar
  4. Demorest, P.B., Penrucci, T., Ransom, S.M., Roberts, M.S.E., Hessels, J.W.T.: Nature 467, 1081 (2010) ADSCrossRefGoogle Scholar
  5. Freire, P.C.C., Hessels, J.W.T., Ransom, S.M., Stairs, I.H., Begin, S., Wolszczan, A.: 40 year of pulsars: millisecond Pulsars, magnetars, and more. AIP Conf. Proc. 983, 459 (2008) ADSCrossRefGoogle Scholar
  6. Glendenning, N.K.: Phys. Rev. D 46, 4161 (1992) ADSCrossRefGoogle Scholar
  7. Haensel, P., Zdunik, J.L.: Astron. Astrophys. 227, 431 (1990) ADSGoogle Scholar
  8. Haensel, P., Zdunik, J.L., Bejger, M., Lattimer, J.M.: Astron. Astrophys. 502, 605 (2009) ADSzbMATHCrossRefGoogle Scholar
  9. Hartle, J.B., Sabbadini, A.G.: Astrophys. J. 213, 831 (1977) ADSCrossRefGoogle Scholar
  10. Heinke, C.O., Rybicki, G.B., Narayan, R., Grindlay, J.E.: Astrophys. J. 644, 1090 (2006) ADSCrossRefGoogle Scholar
  11. Hessels, J.W.T., Ransom, S.M., Stairs, I.H., Freire, P.C.C., Kaspi, V.M., Camilo, F.: Science 311, 1901 (2006) ADSCrossRefGoogle Scholar
  12. Ho, W.C.G., Kaplan, D.L., Chang, P., van Adelsberg, M., Potekhin, A.Y.: Mon. Not. R. Astron. Soc. 375, 821 (2007) ADSCrossRefGoogle Scholar
  13. Kaaret, P., Prieskorn, Z., In’t Zand, J.J.M., Brandt, S., Lund, N., Mereghetti, S., Gotz, D., Kuulkers, E., Tomsick, J.A.: Astrophys. J. Lett. 657, L97 (2007) ADSCrossRefGoogle Scholar
  14. Klupfel, P., Reinhard, P.G., Burvenich, T.J., Maruhn, J.A.: Phys. Rev. C 79, 034310 (2009) ADSCrossRefGoogle Scholar
  15. Koranda, S., Stergioulas, N., Friedman, J.L.: Astrophys. J. 488, 799 (1997) ADSCrossRefGoogle Scholar
  16. Lattimer, J.M., Prakash, M.: Astrophys. J. 550, 426 (2001) ADSCrossRefGoogle Scholar
  17. Lattimer, J.M., Prakash, M.: Science 304, 536 (2004) ADSCrossRefGoogle Scholar
  18. Lattimer, J.M., Prakash, M.: Phys. Rev. Lett. 94, 1101 (2005) CrossRefGoogle Scholar
  19. Lattimer, J.M., Prakash, M.: Phys. Rep. 442, 109 (2007) ADSCrossRefGoogle Scholar
  20. Lattimer, J.M., Swesty, F.D.: Nucl. Phys A 535, 331 (1991) ADSCrossRefGoogle Scholar
  21. Lattimer, J.M., van Riper, K.A., Prakash, M., Prakash, M.: Astrophys. J. 425, 802 (1994) ADSCrossRefGoogle Scholar
  22. Lindblom, L.: Astrophys. J. 278, 364 (1984) ADSCrossRefGoogle Scholar
  23. Ozel, F., Baym, G., Guver, T.: arXiv:1002.3153 (2010)
  24. Page, D., Lattimer, J.M., Prakash, M., Steiner, A.W.: Astrophys. J. 707, 1131 (2009) ADSCrossRefGoogle Scholar
  25. Pons, J.A., Walter, F.M., Lattimer, J.M., Prakash, M., Neuhauser, R., An, P.H.: Astrophys. J. 564, 981 (2002) ADSCrossRefGoogle Scholar
  26. Quaintrell, H., Norton, A.J., Ash, T.D.C., Roche, P., Willems, B., Bedding, T.R., Baldry, I.K., Fender, R.P.: Astron. Astrophys. Suppl. Ser. 401, 303 (2003) Google Scholar
  27. Rhoades, Jr. C.E., Ruffini, R.: Phys. Rev. Lett. 32, 324 (1974) ADSCrossRefGoogle Scholar
  28. Shen, H., Toki, H., Oyamatsu, K., Sumiyoshi, K.: Nucl. Phys. A 637, 1479 (1998) CrossRefGoogle Scholar
  29. Steiner, A.W., Prakash, M., Lattimer, J.M., Ellis, P.J.: Phys. Rep. 411, 325 (2005) ADSCrossRefGoogle Scholar
  30. Steiner, A.W., Lattimer, J.M., Brown, E.F.: Astrophys. J. 722, 33 (2010) ADSCrossRefGoogle Scholar
  31. Strohmayer, T.E., Bildsten, L.: In: Lewin, W.H.G., van der Klis, M. (eds.) Compact Stellar X-ray Sources Cambridge, Boston, p. 113. astro-ph/0301544 (2006)
  32. Suleimanov, V., Poutanen, J., Revnivstev, M., Werner, K.: arXiv:1004.4871 (2010)
  33. Tsang, M.B., Zhang, Y., Danielewicz, P., Famiano, M., Li, Z., Lynch, W.G., Steiner, A.W.: Phys. Rev. Lett. 102, 122701 (2009) ADSCrossRefGoogle Scholar
  34. Walter, F.M., Wolk, S.J., Neuhäuser, R.: Nature 379, 233 (1996) ADSCrossRefGoogle Scholar
  35. Walter, F.M., Eisenbeiß, T., Lattimer, J.M., Kim, B., Hambaryan, V., Neuhäuser, R.: Astrophys. J. 724, 669 (2010) ADSCrossRefGoogle Scholar
  36. Webb, N.A., Barret, D.: Astrophys. J. 671, 727 (2007) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Physics & AstronomyStony Brook UniversityStony BrookUSA

Personalised recommendations