Astrophysics and Space Science

, Volume 332, Issue 2, pp 341–351 | Cite as

Mass density of the upper atmosphere derived from Starlette’s Precise Orbit Determination with Satellite Laser Ranging

  • H. S. JeonEmail author
  • S. Cho
  • Y. S. Kwak
  • J. K. Chung
  • J. U. Park
  • D. K. Lee
  • M. Kuzmicz-Cieslak
Original Article


The atmospheric mass density of the upper atmosphere from the spherical Starlette satellite’s Precise Orbit Determination is first derived with Satellite Laser Ranging measurements at 815 to 1115 km during strong solar and geomagnetic activities. Starlette’s orbit is determined using the improved orbit determination techniques combining optimum parameters with a precise empirical drag application to a gravity field. MSIS-86 and NRLMSISE-00 atmospheric density models are compared with the Starlette drag-derived atmospheric density of the upper atmosphere. It is found that the variation in the Starlette’s drag coefficient above 800 km corresponds well with the level of geomagnetic activity. This represents that the satellite orbit is mainly perturbed by the Joule heating from geomagnetic activity at the upper atmosphere. This result concludes that MSIS empirical models strongly underestimate the mass density of the upper atmosphere as compared to the Starlette drag-derived atmospheric density during the geomagnetic storms. We suggest that the atmospheric density models should be analyzed with higher altitude acceleration data for a better understanding of long-term solar and geomagnetic effects.


Mass density Starlette Precise Orbit Determination Satellite Laser Ranging MSIS models Geomagnetic activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berger, C., Ill, M., Barlier, F.: Reassessment of the thermospheric response to geomagnetic at low latitudes. Ann. Geophys. 6, 541–558 (1988) ADSGoogle Scholar
  2. Bruinsma, S., Biancale, R.: Total densities derived from accelerometer data. J. Spacecr. Rockets 40, 230–236 (2003) ADSCrossRefGoogle Scholar
  3. Bruinsma, S., Forbes, J.: Storm-time equatorial density enhancements observed by CHAMP and GRACE. J. Spacecr. Rockets 44, 1154–1155 (2007) ADSCrossRefGoogle Scholar
  4. Bruinsma, S., Tamagnan, D., Biancale, B.: Atmospheric densities derived from CHAMP/STAR accelerometer observations. Planet. Space Sci. 52, 297–312 (2004) ADSCrossRefGoogle Scholar
  5. Burke, W., Huang, C., Marcos, F., Wise, J.: Interplanetary control of thermospheric densities during large magnetic storms. J. Atmos. Solar-Terr. Phys. 69, 279–287 (2007) ADSCrossRefGoogle Scholar
  6. Donnelly, R., Heath, D., Lean, J., Rottman, G.: Differences in the temporal variations of solar UV flux, 10.7-cm solar radio flux, sunspot number, and Ca-K plage data caused by solar rotation and active region evolution. J. Geophys. Res. 88, 9983–9888 (1983) ADSCrossRefGoogle Scholar
  7. Forbes, J., Gonzalez, M., Marcos, F., Revelle, D., Parish, H.: Magnetic storm response of lower thermosphere density. J. Geophys. Res. 101, 2313–2320 (1996) ADSCrossRefGoogle Scholar
  8. Hedin, A.: MSIS-86 thermospheric model. J. Geophys. Res. 92, 4649–4662 (1987) ADSCrossRefGoogle Scholar
  9. ILRS: 2006 Satellite missions. Cited 1 June 2010
  10. Jacchia, L.G., Thermospheric temperature, density, and composition: new models. SAO Special Report, 375, pp. 1–3 (1977) Google Scholar
  11. Jacchia, L.G., Slowley, J.W., Campbell, I.G.: An analysis of the solar activity effects in the upper atmosphere. Planet. Space Sci. 21, 1835–1842 (1973) ADSCrossRefGoogle Scholar
  12. Jana, M., Ganguly, A.: A comparative study between two models of propagation of spherical and cylindrical shock waves with varying energy in self-gravitating, magneto-radiative non-uniform atmosphere. Astrophys. Space Sci. 275, 285 (2001) ADSzbMATHCrossRefGoogle Scholar
  13. Lejba, P., Scillak, S., Wnuk, E.: Determination of orbits and SLR stations, coordinates on the basis of laser observations of the satellites Starlette and Stella. Adv. Space Res. 40, 143–149 (2007) ADSCrossRefGoogle Scholar
  14. Liu, H., Lühr, H.: Strong disturbance of the upper thermospheric density due to magnetic storms: CHAMP observations. J. Geophys. Res. 110, 5–6 (2005) Google Scholar
  15. Montenbruck, O., Gill, E.: Satellite Orbits. Springer, New York (2001) Google Scholar
  16. Müller, S., Lühr, H., Rentz, S.: Solar and magnetic forcing of the low latitude thermospheric mass density as observed by CHAMP. Ann. Geophys. 27, 2087–2099 (2009) ADSCrossRefGoogle Scholar
  17. Ning, Z., Ding, M.D., Qiu, K.P., Li, H., Su, Y.N.: A complicated solar eruption event on 2003 October 26. Astrophys. Space Sci. 315, 45 (2008) ADSCrossRefGoogle Scholar
  18. Noll, C., Pearlman, M.: In: ILRS Workshop, 2005–2006 Report, international laser ranging service, pp. 1–8 (2007) Google Scholar
  19. Pagano, I.: Magnetic activity optimal tracers: from radio to X-ray; the relevance of UV astronomy. Astrophys. Space Sci. 320, 115 (2009) ADSCrossRefGoogle Scholar
  20. Park, J., Moon, Y.J., Kim, K.H., Cho, K.S., Kim, H.D., Kwak, Y.S., Kim, Y.H., Park, Y.D., Yi, Y.: Comparison between the KOMPSAT-1 drag derived density and the MSISE model density during strong solar and/or geomagnetic activities. Earth Planets Space 60, 601–606 (2008) ADSGoogle Scholar
  21. Parker, E.N.: A critical review of sun-space physics. Astrophys. Space Sci. 277, 1–2 (2001) ADSzbMATHCrossRefGoogle Scholar
  22. Pavlis, D.E., Rowlands, D.D.: GEODYN Systems Description, vol. 3. NASA GSFC, Greenbelt (1998) Google Scholar
  23. Pearlman, M.R., Degnan, J.J., Bosworth, J.M.: The international laser ranging service. Adv. Space Res. 30, 135–143 (2002) ADSCrossRefGoogle Scholar
  24. Picone, J.M., Hedin, A.E., Drob, D.P.: NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J. Geophys. Res. 107, 5–11 (2002) CrossRefGoogle Scholar
  25. Singh, J.B., Mishra, S.K.: A strong shock wave in a medium with exponentially varying density. Astrophys. Space Sci. 126, 59 (1986) ADSzbMATHCrossRefGoogle Scholar
  26. Sutton, E., Forbes, J., Nerem, R.: Global thermospheric neutral density and wind response to the severe 2003 geomagnetic storms from CHAMP accelerometer data. J. Geophys. Res. 110, 1–10 (2005) CrossRefGoogle Scholar
  27. Taply, B., Ries, J., Bettadpur, S., Cheng, M.: Neutral density measurements from the gravity recovery and climate experiment accelerometers. J. Spacecr. Rockets 44, 1220–1225 (2007) ADSCrossRefGoogle Scholar
  28. Vallado, D.A.: Fundamentals of Astrodynamics and Application. Microcosm Press, Bloomington (2001) Google Scholar
  29. Vallado, D.A., Finkleman, D.: A critical assessment of satellite drag and atmospheric density modeling. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit. AIAA 2008-6642, pp. 5–23 (2008) Google Scholar
  30. Zhang, H.Q.: Magnetic fields and solar activities. Astrophys. Space Sci. 305, 211–212 (2006) ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • H. S. Jeon
    • 1
    • 2
    • 3
    Email author
  • S. Cho
    • 2
  • Y. S. Kwak
    • 2
  • J. K. Chung
    • 2
  • J. U. Park
    • 2
  • D. K. Lee
    • 3
  • M. Kuzmicz-Cieslak
    • 4
  1. 1.University of Science and TechnologyDaejeonRepublic of Korea
  2. 2.Space Science DivisionKorea Astronomy and Space Science InstituteDaejeonRepublic of Korea
  3. 3.Korean Air Force HeadquartersChungnamRepublic of Korea
  4. 4.NASA Goddard Earth Science and Technology CenterUMBC & NASA Goddard 698BaltimoreUSA

Personalised recommendations