Astrophysics and Space Science

, Volume 331, Issue 2, pp 351–395 | Cite as

Phenomenology of the Lense-Thirring effect in the solar system

  • Lorenzo IorioEmail author
  • Herbert I. M. Lichtenegger
  • Matteo Luca Ruggiero
  • Christian Corda
Invited Review


Recent years have seen increasing efforts to directly measure some aspects of the general relativistic gravitomagnetic interaction in several astronomical scenarios in the solar system. After briefly overviewing the concept of gravitomagnetism from a theoretical point of view, we review the performed or proposed attempts to detect the Lense-Thirring effect affecting the orbital motions of natural and artificial bodies in the gravitational fields of the Sun, Earth, Mars and Jupiter. In particular, we will focus on the evaluation of the impact of several sources of systematic uncertainties of dynamical origin to realistically elucidate the present and future perspectives in directly measuring such an elusive relativistic effect.


Experimental tests of gravitational theories Satellite orbits Harmonics of the gravity potential field Ephemerides, almanacs, and calendars Lunar, planetary, and deep-space probes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abshire, J.B., Sun, X., Neumann, G., McGarry, J., Zagwodzki, T., Jester, P., Riris, H., Zuber, M.T., Smith, D.E.: Laser pulses from Earth detected at Mars. In: Conference on Lasers and Electro-Optics (CLEO-06), Long Beach, California, May 2006 Google Scholar
  2. Allen, B.: In: Marck, J.-A., Lasota, J.-P. (eds.) Relativistic Gravitation and Gravitational Radiation: The Stochastic Gravity-Wave Background: Sources and Detection, p. 373. Cambridge University Press, Cambridge (1997) Google Scholar
  3. Anderson, J.D.: In: Gehrels, T., Matthews, M.S. (eds.) Jupiter: Studies of the Interior, Atmosphere, Magnetosphere, and Satellites: The gravity field of Jupiter, p. 113. University of Arizona Press, Tucson (1976) Google Scholar
  4. Anderson, J.D., Lau, E.L., Schubert, G., Palguta, J.L.: Gravity inversion considerations for radio Doppler data from the JUNO Jupiter polar orbiter. In: DPS Meeting #36, #14.09 (2004), American Astronomical Society. Cited 20 Mar 2010
  5. Andrés, J.I.: Enhanced modelling of LAGEOS non-gravitational perturbations. Ph.D. thesis, Sieca Repro Turbineweg, Delft (2007) Google Scholar
  6. Appourchaux, T., Burston, R., Chen, Y., Cruise, M., Dittus, H., Foulon, B., Gill, P., Gizon, L., Klein, H., Klioner, S.A., Kopeikin, S.M., Krüger, H., Lämmerzahl, C., Lobo, A., Luo, X., Margolis, H., Ni, W.-T., Pulido Patón, A., Peng, Q., Peters, A., Rasel, E., Rüdiger, A., Samain, É., Selig, H., Shaul, D., Sumner, T., Thei, S., Touboul, P., Turyshev, S.G., Wang, H., Wang, L., Wen, L., Wicht, A., Wu, J., Zhang, X., Zhao, C.: Astrodynamical Space Test of Relativity Using Optical Devices I (ASTROD I)—A class-M fundamental physics mission proposal for Cosmic Vision 2015–2025. Exp. Astron. 23, 491 (2009) ADSCrossRefGoogle Scholar
  7. Arvanitaki, A., Dubovsky, S.: Exploring the string axiverse with precision black hole physics. Phys. Rev. D. 81, 123530 (2010) ADSGoogle Scholar
  8. Ashby, N., Allison, T.: Canonical planetary equations for velocity-dependent forces, and the Lense-Thirring precession. Celest. Mech. Dyn. Astron. 57, 537 (1993) zbMATHMathSciNetADSCrossRefGoogle Scholar
  9. Ashby, N., Bender, P., Wahr, J.M.: Future gravitational physics tests from ranging to the BepiColombo Mercury planetary orbiter. Phys. Rev. D 75, 022001 (2007) ADSGoogle Scholar
  10. Balogh, A., Grard, R., Solomon, S.C., Schulz, R., Langevin, Y., Kasaba, Y., Fujimoto, M.: Missions to Mercury. Space Sci. Rev. 132, 611 (2007) ADSCrossRefGoogle Scholar
  11. Barker, B.M., O’Connell, R.F.: Derivation of the equations of motion of a gyroscope from the quantum theory of gravitation. Phys. Rev. D 2, 1428 (1970) ADSCrossRefGoogle Scholar
  12. Barker, B.M., O’Connell, R.F.: Relativity gyroscope experiment at arbitrary orbit inclinations. Phys. Rev. D 6, 956 (1972) ADSCrossRefGoogle Scholar
  13. Barker, B.M., O’Connell, R.F.: Effect of the rotation of the central body on the orbit of a satellite. Phys. Rev. D 10, 1340 (1974) ADSCrossRefGoogle Scholar
  14. Baskaran, D., Grishchuk, L.P.: Components of the gravitational force in the field of a gravitational wave. Class. Quantum. Gravity 21, 4041 (2004) zbMATHMathSciNetADSCrossRefGoogle Scholar
  15. Beck, J.G., Giles, P.: Helioseismic determination of the solar rotation axis. Astrophys. J. Lett. 621, L153 (2005) ADSCrossRefGoogle Scholar
  16. Bedford, D., Krumm, P.: On relativistic gravitation. Am. J. Phys. 53, 889 (1985) ADSCrossRefGoogle Scholar
  17. Bini, D., Cherubini, C., Chicone, C., Mashhoon, B.: Gravitational induction. Class. Quantum Gravity 25, 225014 (2008) MathSciNetADSCrossRefGoogle Scholar
  18. Biswas, A., Mani, K.R.S.: Relativistic perihelion precession of orbits of Venus and the Earth. Cent. Eur. J. Phys. 6, 754 (2008) CrossRefGoogle Scholar
  19. Bogorodskii, A.F.: Relativistic effects in the motion of an artificial Earth satellite. Sov. Astron. 3, 857 (1959) MathSciNetADSGoogle Scholar
  20. Borderies, N., Yoder, C.F.: Phobos’ gravity field and its influence on its orbit and physical librations. Astron. Astrophys. 233, 235 (1990) ADSGoogle Scholar
  21. Braginsky, V.B., Polnarev, A.G.: Relativistic spin quadrupole gravitational effect. J. Exp. Theor. Phys. Lett. 31, 415 (1980) Google Scholar
  22. Braginsky, V.B., Caves, C.M., Thorne, K.S.: Laboratory experiments to test relativistic gravity. Phys. Rev. D 15, 2047 (1977) ADSCrossRefGoogle Scholar
  23. Braginsky, V.B., Polnarev, A.G., Thorne, K.S.: Foucault pendulum at the south pole: proposal for an experiment to detect the Earth’s general relativistic gravitomagnetic field. Phys. Rev. Lett. 53, 863 (1984) ADSCrossRefGoogle Scholar
  24. Camacho, A., Ahluwalia, D.W.: Quantum zeno effect and the detection of gravitomagnetism. Int. J. Mod. Phys. D 10, 9 (2001) ADSGoogle Scholar
  25. Capozziello, S., De Laurentis, M., Garufi, F., Milano, L.: Relativistic orbits with gravitomagnetic corrections. Phys. Scr. 79, 025901 (2009) ADSCrossRefGoogle Scholar
  26. Capozziello, S., De Laurentis, M., Forte, L., Garufi, F., Milano, L.: Gravitomagnetic corrections on gravitational waves. Phys. Scr. 81, 035008 (2010) ADSCrossRefGoogle Scholar
  27. Cavendish, H.: Experiments to determine the density of the Earth. By Henry Cavendish, Esq. F.R.S. and A.S. Philos. Trans. R. Soc. London 88, 469 (1798) CrossRefGoogle Scholar
  28. Cerdonio, M., Prodi, G.A., Vitale, S.: Dragging of inertial frames by the rotating Earth: proposal and feasibility for a ground-based detection. Gen. Relativ. Gravit. 20, 83 (1988) ADSCrossRefGoogle Scholar
  29. Chandler, J.F., Pearlman, M.R., Reasenberg, R.D., Degnan, J.J.: Solar-system dynamics and tests of general relativity with planetary laser ranging. In: Noomen, R., Davila, J.M., Garate, J., Noll, C., Pearlman, M. (eds.) Proc. 14-th International Workshop on Laser Ranging, San Fernando, Spain, June 7–11 2004.
  30. Chashchina, O., Iorio, L., Silagadze, Z.: Elementary derivation of the Lense-Thirring precession. Acta Phys. Pol. B 40, 2363 (2009) ADSGoogle Scholar
  31. Chauvenet, W.: A manual of spherical and practical astronomy. Vol. 2: Theory and use of astronomical instruments. Method of least squares, 1st edn. Lippincott, Philadelphia (1863); Unabridged and unaltered republication of the fifth revised and corrected edition 1891. Dover, New York, (1960) Google Scholar
  32. Christodoulidis, D.C., Smith, D.E., Williams, R.G., Klosko, S.M.: Observed tidal braking in the Earth/Moon/Sun system. J. Geophys. Res. 93, 6216 (1988) ADSCrossRefGoogle Scholar
  33. Ciufolini, I.: Measurement of the Lense-Thirring drag on high-altitude, laser-ranged artificial satellites. Phys. Rev. Lett. 56, 278 (1986) ADSCrossRefGoogle Scholar
  34. Ciufolini, I.: A comprehensive introduction to the LAGEOS gravitomagnetic experiment: from the importance of the gravitomagnetic field in physics to preliminary error analysis and error budget. Int. J. Mod. Phys. A 4, 3083 (1989) ADSCrossRefGoogle Scholar
  35. Ciufolini, I.: Gravitomagnetism and status of the LAGEOS III experiment. Class. Quantum Gravity 11, A73 (1994) ADSCrossRefGoogle Scholar
  36. Ciufolini, I.: On a new method to measure the gravitomagnetic field using two orbiting satellites. Nuovo Cim. A 109, 1709 (1996) ADSCrossRefGoogle Scholar
  37. Ciufolini, I.: LARES/WEBER-SAT, frame-dragging and fundamental physics (2004, unpublished). gr-qc/0412001
  38. Ciufolini, I.: On the orbit of the LARES satellite (2006, unpublished). gr-qc/0609081
  39. Ciufolini, I.: Dragging of inertial frames. Nature 449, 41 (2007) ADSCrossRefGoogle Scholar
  40. Ciufolini, I.: Frame-dragging, gravitomagnetism and Lunar Laser Ranging. New Astron. 15, 332 (2010) ADSCrossRefGoogle Scholar
  41. Ciufolini, I., Pavlis, E.C.: A confirmation of the general relativistic prediction of the Lense–Thirring effect. Nature 431, 958 (2004) ADSCrossRefGoogle Scholar
  42. Ciufolini, I., Pavlis, E.C.: On the measurement of the Lense-Thirring effect using the nodes of the LAGEOS satellites, in reply to “On the reliability of the so far performed tests for measuring the Lense-Thirring effect with the LAGEOS satellites” by Iorio, L. New Astron. 10, 636 (2005) ADSCrossRefGoogle Scholar
  43. Ciufolini, I., Lucchesi, D.M., Vespe, F., Mandiello, A.: Measurement of dragging of inertial frames and gravitomagnetic field using laser-ranged satellites. Nuovo Cim. A 109, 575 (1996) ADSCrossRefGoogle Scholar
  44. Ciufolini, I., Lucchesi, D.M., Vespe, F., Chieppa, F.: Measurement of gravitomagnetism. Europhys. Lett. 39, 359 (1997a) ADSCrossRefGoogle Scholar
  45. Ciufolini, I., Chieppa, F., Lucchesi, D.M., Vespe, F.: Test of Lense-Thirring orbital shift due to spin. Class. Quantum Gravity 14, 2701 (1997b) zbMATHMathSciNetADSCrossRefGoogle Scholar
  46. Ciufolini, I., Pavlis, E.C., Chieppa, F., Fernandes-Vieira, E., Pérez-Mercader, J.: Test of general relativity and measurement of the Lense-Thirring effect with two earth satellites. Science 279, 2100 (1998a) ADSCrossRefGoogle Scholar
  47. Ciufolini, I., et al.: LARES Phase A. University La Sapienza, Rome (1998b) Google Scholar
  48. Ciufolini, I., Pavlis, E.C., Peron, R.: Determination of frame-dragging using Earth gravity models from CHAMP and GRACE. New Astron. 11, 527 (2006) ADSCrossRefGoogle Scholar
  49. Ciufolini, I., Paolozzi, A., Pavlis, E.C., Ries, J.C., Koenig, R., Matzner, R.A., Sindoni, G., Neumayer, H.: Towards a one percent measurement of frame dragging by spin with satellite laser ranging to LAGEOS, LAGEOS 2 and LARES and GRACE gravity models. Space Sci. Rev. 148, 71 (2009) ADSCrossRefGoogle Scholar
  50. Clark, S.J., Tucker, R.W.: Gauge symmetry and gravito-electromagnetism. Class. Quantum Gravity 17, 4125 (2000) zbMATHMathSciNetADSCrossRefGoogle Scholar
  51. Cohen, S.C., Smith, D.E. (eds.): LAGEOS (Laser Geodynamic Satellite). Special issue. J. Geophys. Res. 90, 9215 (1985) Google Scholar
  52. Cohen, J.M., Mashhoon, B.: Standard clocks, interferometry, and gravitomagnetism. Phys. Lett. A 181, 353 (1993) ADSCrossRefGoogle Scholar
  53. Combrinck, L.: Evaluation of PPN parameter gamma as a test of general relativity using SLR data. In: Schillak, S. (ed.) Proc. 16th Int. Laser Ranging Workshop (Poznań (PL) 13–17 October 2008) (2008). Cited 20 Mar 2010
  54. Conklin, J.W.: The Gravity Probe B Collaboration: The Gravity Probe B experiment and early results. J. Phys. Conf. Ser. 140, 012001 (2008) ADSCrossRefGoogle Scholar
  55. Corda, C.: The Virgo-MiniGRAIL cross correlation for the detection of scalar gravitational waves. Mod. Phys. Lett. A 22, 1727 (2007a) MathSciNetADSCrossRefGoogle Scholar
  56. Corda, C.: The importance of the “magnetic” components of gravitational waves in the response functions of interferometers. Int. J. Mod. Phys. D 16, 1497 (2007b) zbMATHMathSciNetADSGoogle Scholar
  57. Corda, C.: Interferometric detection of gravitational waves: the definitive test for general relativity. Int. J. Mod. Phys. D 18, 2275 (2009) zbMATHADSGoogle Scholar
  58. Corda, C.: A review of the stochastic background of gravitational waves in f(R) gravity with WMAP constrains. Open Astron. J. ArXiv:0901.1193 (2010, in press)
  59. Corda, C., Ali, S.A., Cafaro, C.: Interferometer response to scalar gravitational waves. Int. J. Mod. Phys. D. ArXiv:0902.0093 (2010, in press)
  60. Costa, L.F.O., Herdeiro, C.A.R.: Gravitoelectromagnetic analogy based on tidal tensors. Phys. Rev. D 78, 024021 (2008) MathSciNetADSCrossRefGoogle Scholar
  61. Costa, L.F.O., Herdeiro, C.A.R.: In: Klioner, S.A., Seidelmann, P.K., Soffel, M.H. (eds.) Relativity in fundamental astronomy: dynamics, reference frames, and data analysis. Proceedings IAU Symposium No. 261: EPM ephemerides and relativity, p. 31. Cambridge University Press, Cambridge (2010) Google Scholar
  62. Crosta, M.T., Mignard, F.: Microarcsecond light bending by Jupiter. Class. Quantum Gravity 23, 4853 (2006) zbMATHADSCrossRefGoogle Scholar
  63. Cugusi, L., Proverbio, E.: Relativistic effects on the motion of the Earth’s. satellites. J. Geodyn. 51, 249 (1977) Google Scholar
  64. Cugusi, L., Proverbio, E.: Relativistic effects on the motion of Earth’s artificial satellites. Astron. Astrophys. 69, 321 (1978) ADSGoogle Scholar
  65. Degnan, J.J.: Satellite laser ranging: current status and future prospects. IEEE Trans. Geosci. Remote Sens. GE-23, 398 (1985) ADSCrossRefGoogle Scholar
  66. Degnan, J.J.: Simulating interplanetary transponder and laser communications experiments via dual station ranging to SLR satellites. In: Proc. 15-th International Workshop on Laser Ranging, Canberra, Australia, October 15–20, 2006: lw15/docs/papers/Simulating Interplanetary Transponder and Laser Communications Experiments via Dual Station Ranging to SLR Satellites.pdf. Cited 20 Mar 2010 Google Scholar
  67. Degnan, J.J.: Laser transponders for high-accuracy interplanetary laser ranging and time transfer. In: Dittus, H., Lämmerzahl, C., Turyshev, S.G. (eds.) Lasers, Clocks and Drag-Free Control Exploration of Relativistic Gravity in Space, p. 231. Springer, Berlin (2008) CrossRefGoogle Scholar
  68. de Boer, H.: Experiments relating to the Newtonian gravitational constant. In: Taylor, B.N., Philips, W.D. (eds.) Precision Measurement and Fundamental Constants. Natl. Bur. Stand. US. Spec. Publ. 617, p. 561. Washington, Natl. Bur. Stand. US (1984) Google Scholar
  69. de Sitter, W.: Einstein’s theory of gravitation and its astronomical consequences. Mon. Not. R. Astron. Soc. 76, 699 (1916) ADSGoogle Scholar
  70. Dickey, J.O., Bender, P.L., Faller, J.E., Newhall, X.X., Ricklefs, R.L., Ries, J.G., Shelus, P.J., Veillet, C., Whipple, A.L., Wiant, J.R., Williams, J.G., Yoder, C.F.: Lunar laser ranging: a continuing legacy of the Apollo program. Science 265, 482 (1994) ADSCrossRefGoogle Scholar
  71. Dymnikova, I.G.: Motion of particles and photons in the gravitational field of a rotating body (In memory of Vladimir Afanas’evich Ruban). Sov. Phys. Usp. 29, 215 (1986) ADSCrossRefGoogle Scholar
  72. Eddington, A.S.: The Mathematical Theory of Relativity. Cambridge University Press, Cambridge (1922) Google Scholar
  73. Einstein, A.: Zum gegenwärtigen Stande des Gravitationsproblem. Phys. Z. 14, 1249 (1913) Google Scholar
  74. Einstein, A.: Zur allgemeinen Relativitätstheorie. Sitz.-ber. K. Preuß. Akad. Wiss. XLIV, 778 (1915) Google Scholar
  75. Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitz.-ber. K. Preuß. Akad. Wiss., 688 (1916) Google Scholar
  76. Einstein, A.: Über Gravitationswellen. Sitz.-ber. K. Preuß. Akad. Wiss. 8, 154 (1918) Google Scholar
  77. Everitt, C.W.F.: The gyroscope experiment. I. General description and analysis of gyroscope performance. In: Bertotti, B. (ed.) Proc. Int. School Phys. “Enrico Fermi” Course LVI, p. 331. Academic Press, New York (1974) Google Scholar
  78. Everitt, C.W.F., et al.: Testing relativistic gravity in space: gravity probe B: countdown to launch. In: Lämmerzahl, C., Everitt, C.W.F., Hehl, F.W. (eds.) Gyros, Clocks, Interferometers, p. 52. Springer, Berlin (2001) CrossRefGoogle Scholar
  79. Everitt, C.W.F., et al.: Gravity probe B data analysis. Space Sci. Rev. 148, 53 (2009) ADSCrossRefGoogle Scholar
  80. Fairbank, W.M., Schiff, L.I.: Proposed experimental test of general relativity. Proposal to NASA. Springer, Berlin (1961) Google Scholar
  81. Fienga, A., Manche, H., Laskar, J., Gastineau, M.: INPOP06: a new numerical planetary ephemeris. Astron. Astrophys. 477, 315 (2008) ADSCrossRefGoogle Scholar
  82. Fienga, A., Laskar, J., Morley, T., Manche, H., Kuchynka, P., Le Poncin-Lafitte, C., Budnik, F., Gastineau, M., Somenzi, L.: INPOP08, a 4-D planetary ephemeris: from asteroid and time-scale computations to ESA Mars Express and Venus Express contributions. Astron. Astrophys. 507, 1675 (2009) ADSCrossRefGoogle Scholar
  83. Fienga, A., Laskar, J., Kuchynka, P., Le Poncin-Lafitte, C., Manche, H., Gastineau, M.: Gravity tests with INPOP planetary ephemerides. In: Klioner, S.A., Seidelmann, P.K., Soffel, M.H. (eds.) Relativity in Fundamental Astronomy: Dynamics, Reference Frames, and Data Analysis, Proceedings IAU Symposium No. 261, p. 159. Cambridge University Press, Cambridge (2010) Google Scholar
  84. Folkner, W.M., Williams, J.G., Boggs, D.H.: The planetary and lunar ephemeris DE 421. Memorandum IOM 343R-08-003. California Institute of Technology, Jet Propulsion Laboratory (2008) Google Scholar
  85. Fomalont, E.B., Kopeikin, S.M.: Radio interferometric tests of general relativity. In: Jin, W.J., Platais, I., Perryman, M.A.C. (eds.) A Giant Step: from Milli- to Micro-arcsecond Astrometry Proceedings IAU Symposium No. 248, 2007, p. 383. Cambridge University Press, Cambridge (2008) Google Scholar
  86. Forbes, J.M., Bruinsma, S., Lemoine, F.G., Bowman, B.R., Konopliv, A.S.: Variability of the satellite drag environments of Earth, Mars and Venus due to rotation of the Sun. In: Fall Meeting 2006, American Geophysical Union, Abstract #SA22A-04 (2006) Google Scholar
  87. Förste, Ch., Flechtner, F., Schmidt, R., König, R., Meyer, U., Stubenvoll, R., Rothacher, M., Barthelmes, F., Neumayer, H., Biancale, R., Bruinsma, S., Lemoine, J.-M., Loyer, S.: A mean global gravity field model from the combination of satellite mission and altimetry/gravimetry surface data—EIGEN-GL04C. Geophys. Res. Abstr. 8, 03462 (2006) Google Scholar
  88. Förste, Ch., Flechtner, F., Schmidt, R., Stubenvoll, R., Rothacher, M., Kusche, J., Neumayer, H., Biancale, R., Lemoine, J.-M., Barthelmes, F., Bruinsma, S., König, R., Meyer, U.: EIGEN-GL05C—a new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation. Geophys. Res. Abstr. 10, 03426 (2008) Google Scholar
  89. Giazotto, A.: Status of gravitational wave detection. J. Phys. Conf. Ser. 120, 032002 (2008) ADSCrossRefGoogle Scholar
  90. Ginzburg, V.L.: The use of artificial earth satellites for verifying the general theory of relativity. Usp. Fiz. Nauk (Adv. Phys. Sci.) 63, 119 (1957) MathSciNetGoogle Scholar
  91. Ginzburg, V.L.: Artificial satellites and the theory of relativity. Sci. Am. 200, 149 (1959) CrossRefADSGoogle Scholar
  92. Ginzburg, V.L.: In: Recent developments in general relativity: experimental verifications of the general theory of relativity, p. 57. Pergamon, London (1962) Google Scholar
  93. Gronwald, F., Gruber, E., Lichtenegger, H.I.M., Puntigam, R.A.: Gravity Probe C(lock)—probing the gravitomagnetic field of the Earth by means of a clock experiment. ESA SP-420, 29 (1997) Google Scholar
  94. Guillot, T.: The interiors of giant planets: models and outstanding questions. Ann. Rev. Earth Planet. Sci. 33, 493 (2005) ADSCrossRefGoogle Scholar
  95. Haas, M.R., Ross, D.K.: Measurement of the angular momentum of Jupiter and the Sun by use of the Lense-Thirring effect. Astrophys. Space Sci. 32, 3 (1975) ADSCrossRefGoogle Scholar
  96. Heaviside, O.: Electromagnetic Theory, Vol. I. The Electrician Printing and Publishing Co., London (1894) Google Scholar
  97. Hiscock, W.A., Lindblom, L.: Post-Newtonian effects on satellite orbits near Jupiter and Saturn. Astrophys. J. 231, 224 (1979) ADSCrossRefGoogle Scholar
  98. Holzmüller, G.: Über die Anwendung der Jacobi-Hamilton’schen Methode auf den Fall der Anziehung nach dem elektrodynamischen Gesetze von Weber. Z. Math. Phys. 15, 69 (1870) Google Scholar
  99. Hori, Y., Sano, T., Ikoma, M., Ida, S.: On uncertainty of Jupiter’s core mass due to observational errors. In: Sun, Y.-S., Ferraz-Mello, S., Zhou, J.-L. (eds.) Exoplanets: Detection, Formation and Dynamics, Proceedings IAU Symposium, No. 249, p. 163. Cambridge University Press, Cambridge (2008) Google Scholar
  100. Hulse, R.A., Taylor, J.H.: Discovery of a pulsar in a binary system. Astrophys. J. Lett. 195, L51 (1975) ADSCrossRefGoogle Scholar
  101. Inversi, P., Vespe, F.: Direct and indirect solar radiation effects acting on LAGEOS satellite: Some refinements. Adv. Space Res. 14, 73 (1994) ADSCrossRefGoogle Scholar
  102. Iorio, L.: An alternative derivation of the Lense-Thirring drag on the orbit of a test body. Nuovo Cim. B 116, 777 (2001a) ADSGoogle Scholar
  103. Iorio, L.: Satellite non-gravitational orbital perturbations and the detection of the gravitomagnetic clock effect. Class. Quantum Gravity 18, 4303 (2001b) zbMATHADSCrossRefGoogle Scholar
  104. Iorio, L.: Satellite gravitational orbital perturbations and the gravitomagnetic clock effect. Int. J. Mod. Phys. D 11, 599 (2001c) Google Scholar
  105. Iorio, L.: Letter to the editor: a critical approach to the concept of a polar, low-altitude LARES satellite. Class. Quantum Gravity 19, L175 (2002) zbMATHMathSciNetADSCrossRefGoogle Scholar
  106. Iorio, L.: Letter to the editor: on the possibility of measuring the Earth’s gravitomagnetic force in a new laboratory experiment. Class. Quantum Gravity 20, L5 (2003a) zbMATHADSCrossRefGoogle Scholar
  107. Iorio, L.: A new proposal for measuring the Lense-Thirring effect with a pair of supplementary satellites in the gravitational field of the Earth. Phys. Lett. A 308, 81 (2003b) MathSciNetADSCrossRefGoogle Scholar
  108. Iorio, L.: The impact of the static part of the Earth’s gravity field on some tests of general relativity with satellite laser ranging. Celest. Mech. Dyn. Astron. 86, 277 (2003c) zbMATHADSCrossRefGoogle Scholar
  109. Iorio, L.: On the reliability of the so-far performed tests for measuring the Lense-Thirring effect with the LAGEOS satellites. New Astron. 10, 603 (2005a) ADSCrossRefGoogle Scholar
  110. Iorio, L.: The impact of the new Earth gravity models on the measurement of the Lense-Thirring effect with a new satellite. New Astron. 10, 616 (2005b) ADSCrossRefGoogle Scholar
  111. Iorio, L.: On the possibility of testing the Dvali–Gabadadze–Porrati brane-world scenario with orbital motions in the solar system. J. Cosmol. Astropart. Phys. 7, 8 (2005c) MathSciNetADSCrossRefGoogle Scholar
  112. Iorio, L.: Is it possible to measure the Lense-Thirring effect on the orbits of the planets in the gravitational field of the Sun? Astron. Astrophys. 431, 385 (2005d) ADSCrossRefGoogle Scholar
  113. Iorio, L.: On the impossibility of measuring the general relativistic part of the terrestrial acceleration of gravity with superconducting gravimeters. J. Geophys. Res. 167, 567 (2006a) Google Scholar
  114. Iorio, L.: A critical analysis of a recent test of the Lense-Thirring effect with the LAGEOS satellites. J. Geodyn. 80, 128 (2006b) zbMATHADSGoogle Scholar
  115. Iorio, L.: Comments, replies and notes: a note on the evidence of the gravitomagnetic field of Mars. Class. Quantum Gravity 23, 5451 (2006c) zbMATHADSCrossRefGoogle Scholar
  116. Iorio, L. (ed.): The Measurement of Gravitomagnetism: A Challenging Enterprise. NOVA, Hauppauge (2007a) Google Scholar
  117. Iorio, L.: A comment on the paper “On the orbit of the LARES satellite”, by Ciufolini, I. Planet. Space Sci. 55, 1198 (2007b) ADSCrossRefGoogle Scholar
  118. Iorio, L.: LARES/WEBER-SAT and the equivalence principle. Europhys. Lett. 80, 40007 (2007c) ADSCrossRefGoogle Scholar
  119. Iorio, L.: An assessment of the measurement of the Lense-Thirring effect in the Earth gravity field, in reply to: “On the measurement of the Lense-Thirring effect using the nodes of the LAGEOS satellites, in reply to “On the reliability of the so far performed tests for measuring the Lense-Thirring effect with the LAGEOS satellites” by Iorio, L.: ”, by Ciufolini, I., and E. Pavlis. Planet. Space Sci. 55, 503 (2007d) ADSCrossRefGoogle Scholar
  120. Iorio, L.: First preliminary tests of the general relativistic gravitomagnetic field of the Sun and new constraints on a Yukawa-like fifth force from planetary data. Planet. Space Sci. 55, 1290 (2007e) ADSCrossRefGoogle Scholar
  121. Iorio, L.: Dynamical determination of the mass of the Kuiper Belt from motions of the inner planets of the Solar system. Mon. Not. R. Astron. Soc. 375, 1311 (2007f) ADSCrossRefGoogle Scholar
  122. Iorio, L.: Is it possible to measure the Lense-Thirring effect in the gravitational fields of the Sun and of Mars? In: Iorio, L. (ed.) The Measurement of Gravitomagnetism: A Challenging Enterprise, p. 177. NOVA, Hauppauge (2007g) Google Scholar
  123. Iorio, L.: Advances in the measurement of the Lense-Thirring effect with planetary motions in the field of the Sun. Schol. Res. Exch. 2008, 105235 (2008) ADSGoogle Scholar
  124. Iorio, L.: Will it be possible to measure intrinsic gravitomagnetism with lunar laser ranging? Int. J. Mod. Phys. D 18, 1319 (2009a) zbMATHADSCrossRefGoogle Scholar
  125. Iorio, L.: Mars and frame-dragging: study for a dedicated mission. Gen. Relativ. Gravit. 41, 1273 (2009b) zbMATHADSCrossRefGoogle Scholar
  126. Iorio, L.: An assessment of the systematic uncertainty in present and future tests of the Lense-Thirring effect with satellite laser ranging. Space Sci. Rev. 148, 363 (2009c) ADSCrossRefGoogle Scholar
  127. Iorio, L.: A conservative approach to the evaluation of the uncertainty in the LAGEOS-LAGEOS II Lense-Thirring test. Centr. Eur. J. Phys. 8, 25 (2010a) ADSCrossRefGoogle Scholar
  128. Iorio, L.: On possible a-priori “imprinting” of general relativity itself on the performed Lense-Thirring tests with LAGEOS satellites. Commun. Netw. 2, 26 (2010b) CrossRefGoogle Scholar
  129. Iorio, L.: On the impact of the atmospheric drag on the LARES mission. Acta Phys. Pol. B 4, 753 (2010c) Google Scholar
  130. Iorio, L.: Effects of standard and modified gravity on interplanetary ranges. (2010d)
  131. Iorio, L.: On the Lense-Thirring test with the Mars Global Surveyor in the gravitational field of Mars. Centr. Eur. J. Phys. 8, 509 (2010e) ADSCrossRefGoogle Scholar
  132. Iorio, L.: Juno, the angular momentum of Jupiter and the Lense-Thirring effect. New Astron. 15, 554 (2010f) ADSCrossRefGoogle Scholar
  133. Iorio, L., Corda, C.: Gravitomagnetic effect in gravitational waves. AIP Conf. Proc. 1168, 1072 (2009) ADSCrossRefGoogle Scholar
  134. Iorio, L., Corda, C.: Gravitomagnetism and gravitational waves. Open Astron. J. ArXiv:1001.3951 (2010, in press)
  135. Iorio, L., Lainey, V.: The Lense-Thirring effect in the Jovian system of the Galilean satellites and its measurability. Int. J. Mod. Phys. D 14, 2039 (2005) zbMATHADSCrossRefGoogle Scholar
  136. Iorio, L., Lichtenegger, H.I.M.: On the possibility of measuring the gravitomagnetic clock effect in an Earth space-based experiment. Class. Quantum Gravity 22, 119 (2005) zbMATHADSCrossRefGoogle Scholar
  137. Iorio, L., Morea, A.: The impact of the new Earth gravity models on the measurement of the Lense-Thirring effect. Gen. Relativ. Gravit. 36, 1321 (2004) zbMATHADSCrossRefGoogle Scholar
  138. Iorio, L., Lucchesi, D.M., Ciufolini, I.: The LARES mission revisited: an alternative scenario. Class. Quantum Gravity 19, 4311 (2002a) zbMATHADSCrossRefGoogle Scholar
  139. Iorio, L., Lichtenegger, H.I.M., Mashhoon, B.: An alternative derivation of the gravitomagnetic clock effect. Class. Quantum Gravity 19, 39 (2002b) zbMATHMathSciNetADSCrossRefGoogle Scholar
  140. Irwin, P.: Giant Planets of Our Solar System. Springer, Berlin (2003) Google Scholar
  141. Jacobson, R.A.: JUP230 orbit solution (2003) Google Scholar
  142. Jacobson, R.A., Rush, B.: Ephemerides of the martian satellites—MAR063, JPL IOM 343R-06-004 (2006) Google Scholar
  143. Jäggi, A., Beutler, G., Mervart, L.: GRACE gravity field determination using the celestial mechanics approach—first results. In: IAG Symposium on “Gravity, Geoid, and Earth Observation 2008”, Chania, GR, 23–27 June 2008 Google Scholar
  144. Jäggi, A., Beutler, G., Meyer, U., Prange, L., Dach, R., Mervart, L.: AIUB-GRACE02S—Status of GRACE gravity field recovery using the celestial mechanics approach. In: IAG Scientific Assembly 2009, Buenos Aires, Argentina, August 31–September 4 (2009) Google Scholar
  145. Kaula, W.M.: Theory of Satellite Geodesy. Blaisdell, Waltham (1966) Google Scholar
  146. Keiser, G.M., Kolodziejczak, J., Silbergleit, A.S.: Misalignment and resonance torques and their treatment in the GP-B data analysis. Space Sci. Rev. 148, 383 (2009) ADSCrossRefGoogle Scholar
  147. Khan, A.R., O’Connell, R.F.: Gravitational analogue of magnetic force. Nature 261, 480 (1976) ADSCrossRefGoogle Scholar
  148. Klein, M.J., Kox, A.J., Schulmann, R. (eds.): The Collected Papers of Albert Einstein. Vol. 4. The Swiss Years: Writings, 1912–1914, p. 344. Princeton University Press, Princeton (1995) Google Scholar
  149. Kolbenstvedt, H.: Gravomagnetism in special relativity. Am. J. Phys. 56, 523 (1988) ADSCrossRefGoogle Scholar
  150. Konopliv, A.S., Yoder, C.F., Standish, E.M., Yuan, D.-N., Sjogren, W.L.: A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris. Icarus 182, 23 (2006) ADSCrossRefGoogle Scholar
  151. Kopeikin, S.M., Fomalont, E.B.: Aberration and the fundamental speed of gravity in the jovian deflection experiment. Found. Phys. 36, 1244 (2006) zbMATHADSCrossRefGoogle Scholar
  152. Kopeikin, S.M.: Comment on “Gravitomagnetic influence on gyroscopes and on the lunar orbit”. Phys. Rev. Lett. 98, 229001 (2007) ADSCrossRefGoogle Scholar
  153. Kramer, M., Stairs, I.H., Manchester, R.N., McLaughlin, M.A., Lyne, A.G., Ferdman, R.D., Burgay, M., Lorimer, D.R., Possenti, A., D’Amico, N., Sarkissian, J.M., Hobbs, G.B., Reynolds, J.E., Freire, P.C.C., Camilo, F.: Tests of general relativity from timing the double pulsar. Science 314, 97 (2006) ADSCrossRefGoogle Scholar
  154. Krasinsky, G.A., Pitjeva, E.V., Vasilyev, M.V., Yagudina, E.I.: Hidden mass in the asteroid belt. Icarus 158, 98 (2002) ADSCrossRefGoogle Scholar
  155. Krogh, K.: Comments, replies and notes: Comment on ‘Evidence of the gravitomagnetic field of Mars’. Class. Quantum Gravity 24, 5709 (2007) ADSCrossRefGoogle Scholar
  156. Lainey, V., Dehant, V., Pätzold, M.: First numerical ephemerides of the martian moons. Astron. Astrophys. 465, 1075 (2007) ADSCrossRefGoogle Scholar
  157. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields, 4th edn. Pergamon, New York (1975) Google Scholar
  158. Lämmerzahl, C., Neugebauer, G.: The Lense-Thirring effect: from the basic notions to the observed effects. In: Lämmerzahl, C., Everitt, C.W.F., Hehl, F.W. (eds.) Gyros, Clocks, Interferometers…: Testing Relativistic Gravity in Space, p. 31. Springer, Berlin (2001a) CrossRefGoogle Scholar
  159. Lemoine, F.G., Kenyon, S.C., Factor, J.K., Trimmer, R.G., Pavlis, N.K., Chinn, D.S., Cox, C.M., Klosko, S.M., Luthcke, S.B., Torrence, M.H., Wang, Y.M., Williamson, R.G., Pavlis, E.C., Rapp, R.H., Olson, T.R.: The development of the joint NASA GSFC and the National Imagery Mapping Agency (NIMA) geopotential model EGM96. NASA/TP-1998-206861 (1998) Google Scholar
  160. Lense, J., Thirring, H.: Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Phys. Z. 19, 156 (1918) Google Scholar
  161. Lerch, F.J., Nerem, R.S., Putney, B.H., Felsentreger, T.L., Sanchez, B.V., Marshall, J.A., Klosko, S.M., Patel, G.B., Williamson, R.G., Chinn, D.S.: A geopotential model from satellite tracking, altimeter, and surface gravity data: GEM-T3. J. Geophys. Res. 99, 2815 (1994) ADSCrossRefGoogle Scholar
  162. Lichtenegger, H.I.M., Gronwald, F., Mashhoon, B.: On detecting the gravitomagnetic field of the Earth by means of orbiting clocks. Adv. Space Res. 25, 1255 (2000) ADSCrossRefGoogle Scholar
  163. Lichtenegger, H.I.M., Iorio, L., Mashhoon, B.: The gravitomagnetic clock effect and its possible observation. Ann. Phys. 15, 868 (2006) zbMATHCrossRefGoogle Scholar
  164. Lichtenegger, H.I.M., Iorio, L.: Post-Newtonian orbital perturbations. In: Iorio, L. (ed.) The Measurement of Gravitomagnetism: A Challenging Enterprise, p. 87. NOVA, Hauppauge (2007) Google Scholar
  165. Ljubičić, A., Logan, B.A.: A proposed test of the general validity of Mach’s principle. Phys. Lett. A 172, 3 (1992) MathSciNetADSCrossRefGoogle Scholar
  166. Lucchesi, D.M.: Reassessment of the error modelling of non-gravitational perturbations on LAGEOS II and their impact in the Lense–Thirring determination. Part I. Planet. Space Sci. 49, 447 (2001) ADSCrossRefGoogle Scholar
  167. Lucchesi, D.M.: Reassessment of the error modelling of non-gravitational perturbations on LAGEOS II and their impact in the Lense–Thirring determination. Part II. Planet. Space Sci. 50, 1067 (2002) ADSCrossRefGoogle Scholar
  168. Lucchesi, D.M.: The asymmetric reflectivity effect on the LAGEOS satellites and the germanium retroreflectors. Geophys. Res. Lett. 30, 1957 (2003) ADSCrossRefGoogle Scholar
  169. Lucchesi, D.M.: LAGEOS satellites germanium cube-corner-retroreflectors and the asymmetric reflectivity effect. Celest. Mech. Dyn. Astron. 88, 269 (2004) zbMATHADSCrossRefGoogle Scholar
  170. Lucchesi, D.M.: The impact of the even zonal harmonics secular variations on the Lense-Thirring effect measurement with the two Lageos satellites. Int. J. Mod. Phys. D 14, 2005 (1989) Google Scholar
  171. Lucchesi, D.M.: The Lense Thirring effect measurement and LAGEOS satellites orbit analysis with the new gravity field model from the CHAMP mission. Adv. Space Res. 39, 324 (2007a) ADSCrossRefGoogle Scholar
  172. Lucchesi, D.M.: The LAGEOS satellites orbital residuals determination and the way to extract gravitational and non-gravitational unmodeled perturbing effects. Adv. Space Res. 39, 1559 (2007b) ADSCrossRefGoogle Scholar
  173. Lucchesi, D.M., Paolozzi, A.: A cost effective approach for LARES satellite. In: XVI Congresso Nazionale AIDAA, Palermo, IT, 24–28 September 2001 Google Scholar
  174. Lucchesi, D.M., Ciufolini, I., Andrés, J.I., Pavlis, E.C., Peron, R., Noomen, R., Currie, D.G.: LAGEOS II perigee rate and eccentricity vector excitations residuals and the Yarkovsky–Schach effect. Planet. Space Sci. 52, 699 (2004) ADSCrossRefGoogle Scholar
  175. Lucchesi, D.M., Balmino, G.: The LAGEOS satellites orbital residuals determination and the Lense Thirring effect measurement. Planet. Space Sci. 54, 581 (2006) ADSGoogle Scholar
  176. Lyth, D.H., Liddle, A.R.: Primordial Density Perturbation. Cambridge University Press, Cambridge (2009) zbMATHGoogle Scholar
  177. Machida, M.N., Kokubo, E., Inutsuka, S., Matsumoto, T.: Angular momentum accretion onto a gas giant planet. Astrophys. J. 685, 1220 (2008) ADSCrossRefGoogle Scholar
  178. Marov, M.Ya., Avduevsky, V.S., Akim, E.L., Eneev, T.M., Kremnev, R.S., Kulikov, S.D., Pichkhadze, K.M., Popov, G.A., Rogovsky, G.N.: Phobos-Grunt: Russian sample return mission. Adv. Space Res. 33, 2276 (2004) ADSCrossRefGoogle Scholar
  179. Mashhoon, B.: Gravitoelectromagnetism: a brief review. In: Iorio, L. (ed.) The Measurement of Gravitomagnetism: A Challenging Enterprise, p. 29. NOVA, Hauppauge (2007) Google Scholar
  180. Mashhoon, B., Theiss, D.S.: Relativistic tidal forces and the possibility of measuring them. Phys. Rev. Lett. 49, 1542 (1982) MathSciNetADSCrossRefGoogle Scholar
  181. Mashhoon, B., Paik, H.J., Will, C.M.: Detection of the gravitomagnetic field using an orbiting superconducting gravity gradiometer, theoretical principles. Phys. Rev. D 39, 2825 (1989) ADSCrossRefGoogle Scholar
  182. Mashhoon, B., Gronwald, F., Theiss, D.S.: On measuring gravitomagnetism via spaceborne clocks: a gravitomagnetic clock effect. Ann. Phys. 8, 135 (1999) zbMATHCrossRefGoogle Scholar
  183. Mashhoon, B., Gronwald, F., Lichtenegger, H.I.M.: Testing relativistic gravity in space: gravitomagnetism and the clock effect. In: Lämmerzahl, C., Everitt, C.W.F., Hehl, F.W. (eds.) Gyros, Clocks, Interferometers…, p. 83. Springer, Berlin (2001a) CrossRefGoogle Scholar
  184. Mashhoon, B., Iorio, L., Lichtenegger, H.I.M.: On the gravitomagnetic clock effect. Phys. Lett. A 292, 49 (2001b) zbMATHADSCrossRefGoogle Scholar
  185. Mathisson, M.: Neue Mechanik materieller Systemes. Acta Phys. Pol. 6, 163 (1937) zbMATHGoogle Scholar
  186. Matousek, S.: The Juno New Frontiers mission. Acta Astronaut. 61, 932 (2007) ADSCrossRefGoogle Scholar
  187. Mayer-Gürr, T., Eicker, A., Ilk, K.-H.: ITG-GRACE02s: a GRACE gravity field derived from short arcs of the satellite’s orbit. In: 1st Int. Symp. of the International Gravity Field Service “Gravity field of the Earth”, Istanbul, TR, 28 August–1 September 2006 Google Scholar
  188. Mayer-Gürr, T.: ITG-Grace03s: The latest GRACE gravity field solution computed in Bonn Joint Int. GSTM and DFG SPP Symp., Potsdam, D, 15–17 October 2007. Cited 20 Mar 2010
  189. Mayer-Gürr, T., Kurtenbach, E., Eicker, A.: The satellite-only gravity field model ITG-Grace2010s. Cited 20 Mar 2010
  190. McCarthy, D.D., Petit, G.: IERS Conventions (2003), p. 106. Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main (2004) Google Scholar
  191. Merkowitz, S.M., Dabney, P.W., Livas, J.C., McGarry, J.F., Neumann, G.A., Zagwodzki, T.W.: Laser ranging for gravitational, lunar and planetary science. Int. J. Mod. Phys. D 16, 2151 (2007) ADSCrossRefGoogle Scholar
  192. Milani, A., Nobili, A.M., Farinella, P.: Non-gravitational Perturbations and Satellite Geodesy. Adam Hilger, Bristol (1987) zbMATHGoogle Scholar
  193. Milani, A., Vokrouhlický, D., Villani, D., Bonanno, C., Rossi, A.: Testing general relativity with the BepiColombo radio science experiment. Phys. Rev. D 66, 082001 (2002) ADSCrossRefGoogle Scholar
  194. Milani, A., Tommei, G., Vokrouhlický, D., Latorre, E., Cicalò, S.: Relativistic models for the BepiColombo radioscience experiment. In: Klioner, S.A., Seidelmann, P.K., Soffel, M.H. (eds.) Proceedings of the International Astronomical Union, IAU Symposium, Vol. 261. Relativity in Fundamental Astronomy: Dynamics, Reference Frames, and Data Analysis, p. 356. Cambridge University Press, Cambridge (2008) Google Scholar
  195. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, San Francisco (1973) Google Scholar
  196. Mohr, P.J., Taylor, B.N.: CODATA recommended values of the fundamental physical constants: 1998. J. Phys. Chem. Ref. Data 28, 1713 (1999) ADSCrossRefGoogle Scholar
  197. Muhlfelder, B., Adams, M., Clarke, B., Keiser, G.M., Kolodziejczak, J., Li, J., Lockhart, J.M., Worden, P.: GP-B systematic error determination. Space Sci. Rev. 148, 429 (2009) ADSCrossRefGoogle Scholar
  198. Murphy, T.W., Nordtvedt, K., Turyshev, S.G.: Gravitomagnetic influence on gyroscopes and on the lunar orbit. Phys. Rev. Lett. 98, 071102 (2007a) ADSCrossRefGoogle Scholar
  199. Murphy, T.W., Nordtvedt, K., Turyshev, S.G.: Murphy, Nordtvedt, and Turyshev reply. Phys. Rev. Lett. 98, 229002 (2007b) ADSCrossRefGoogle Scholar
  200. Murphy, T.W., Adelberger, E.G., Battat, J.B.R., Carey, L.N., Hoyle, C.D., Leblanc, P., Michelsen, E.L., Nordtvedt, K. Jr., Orin, A.E., Strasburg, J.D., Stubbs, C.W., Swanson, H.E., Williams, E.: The Apache point observatory lunar laser-ranging operation: instrument description and first detections. Publ. Astron. Soc. Pacif. 120, 20 (2008) ADSCrossRefGoogle Scholar
  201. Neumann, G., Cavanaugh, J., Coyle, B., McGarry, J., Smith, D., Sun, X., Zagwodzki, T., Zuber, M.: Laser ranging at interplanetary distances. In: Proc. 15-th International Workshop on Laser Ranging, Canberra, Australia, October 15–20, 2006. http://cddis.gsfc.nasa. gov/lw15/docs/papers/Laser Ranging at Interplanetary Distances.pdf. Cited 20 Mar 2010 Google Scholar
  202. Newhall, X.X., Standish, E.M., Williams, J.G.: DE 102—a numerically integrated ephemeris of the moon and planets spanning forty-four centuries. Astron. Astrophys. 125, 150 (1983) zbMATHADSGoogle Scholar
  203. Ni, W.-T.: Theoretic frameworks for testing relativistic gravity IV. Astrophys. J. 176, 769 (1972) ADSCrossRefGoogle Scholar
  204. Ni, W.-T.: ASTROD and ASTROD I—overview and progress. Int. J. Mod. Phys. D 17, 921 (2008) zbMATHADSCrossRefGoogle Scholar
  205. Nordtvedt, K. Jr.: Equivalence principle for massive bodies II. Theory. Phys. Rev. 169, 1017 (1968) ADSCrossRefGoogle Scholar
  206. Nordtvedt, K. Jr.: Equivalence principle for massive bodies including rotational energy and radiation pressure. Phys. Rev. 180, 1293 (1969) ADSCrossRefGoogle Scholar
  207. Nordtvedt, K. Jr.: Existence of the gravitomagnetic interaction. Int. J. Theor. Phys. 27, 1395 (1988) zbMATHCrossRefGoogle Scholar
  208. Nordtvedt, K. Jr.: Slr contributions to fundamental physics. Surv. Geophys. 22, 597 (2001) ADSCrossRefGoogle Scholar
  209. Nordtvedt, K. Jr.: Some considerations on the varieties of frame dragging. In: Ruffini, R.J., Sigismondi, C. (eds.): Nonlinear Gravitodynamics. The Lense-Thirring Effect, p. 35. World Scientific, Singapore (2003) CrossRefGoogle Scholar
  210. North, J.D.: The Measure of the Universe. Dover, New York (1989) Google Scholar
  211. Ohanian, H.C., Ruffini, R.J.: Gravitation and Spacetime, 2nd edn. Norton, New York (1994) zbMATHGoogle Scholar
  212. Paik, H.-J.: Tests of general relativity in earth orbit using a superconducting gravity gradiometer. Adv. Space Res. 9, 41 (1989) ADSCrossRefGoogle Scholar
  213. Paik, H.-J.: Detection of the gravitomagnetic field using an orbiting superconducting gravity gradiometer: principle and experimental considerations. Gen. Relativ. Gravit. 40, 907 (2008) zbMATHADSCrossRefGoogle Scholar
  214. Papapetrou, A.: Spinning test-particles in general relativity. I. Proc. R. Soc. Lond. Series A, Math. Phys. Sci. 209, 248 (1951) zbMATHMathSciNetADSCrossRefGoogle Scholar
  215. Pavlis, E.C.: Geodetic contributions to gravitational experiments in space. In: Cianci, R., Collina, R., Francaviglia, M., Fré, P. (eds.) Recent Developments in General Relativity, Proc. 14th SIGRAV Conf. on General Relativity and Gravitational Physics, Genova, IT, 18–22 September 2000, p. 217. Springer, Berlin (2002) Google Scholar
  216. Peirce, B.: Criterion for the rejection of doubtful observations. Astron. J. 2, 161 (1852); Errata. Astron. J. 2, 176 (1852) ADSCrossRefGoogle Scholar
  217. Pfister, H.: On the history of the so-called Lense-Thirring effect. Gen. Relativ. Gravit. 39, 1735 (2007) zbMATHMathSciNetADSCrossRefGoogle Scholar
  218. Pijpers, F.P.: Helioseismic determination of the solar gravitational quadrupole moment. Mon. Not. R. Astron. Soc. 297, L76 (1998) ADSCrossRefGoogle Scholar
  219. Pijpers, F.P.: Asteroseismic determination of stellar angular momentum. Astron. Astrophys. 402, 683 (2003) ADSCrossRefGoogle Scholar
  220. Pirani, F.A.E.: On the physical significance of the Riemann tensor. Acta Phys. Pol. 15, 389 (1956) MathSciNetGoogle Scholar
  221. Pirani, F.A.E.: Invariant formulation of gravitational radiation theory. Phys. Rev. 105, 1089 (1957) zbMATHMathSciNetADSCrossRefGoogle Scholar
  222. Pireaux, S., Rozelot, J.-P.: Solar quadrupole moment and purely relativistic gravitation contributions to Mercury’s perihelion advance. Astrophys. Space Sci. 284, 1159 (2003) ADSCrossRefGoogle Scholar
  223. Pitjeva, E.V.: Relativistic effects and solar oblateness from radar observations of planets and spacecraft. Astron. Lett. 31, 340 (2005a) ADSCrossRefGoogle Scholar
  224. Pitjeva, E.V.: High-precision ephemerides of planets-EPM and determination of some astronomical constants. Sol. Syst. Res. 39, 176 (2005b) ADSCrossRefGoogle Scholar
  225. Pitjeva, E.V.: Use of optical and radio astrometric observations of planets, satellites and spacecraft for ephemeris astronomy. In: Jin, W.J., Platais, I., Perryman, M.A.C. (eds.) A Giant Step: From Milli- to Micro-arcsecond Astrometry, p. 20. Cambridge University Press, Cambridge (2008) Google Scholar
  226. Pitjeva, E.V.: EPM ephemerides and relativity. In: Klioner, S.A., Seidelmann, P.K., Soffel, M.H. (eds.) Relativity in Fundamental Astronomy: Dynamics, Reference Frames, and Data Analysis, Proceedings IAU Symposium No. 261, p. 170. Cambridge University Press, Cambridge (2010) Google Scholar
  227. Polnarev, A.G.: Proposals for an experiment to detect the Earth’s gravitomagnetic field. In: Kovalevsky, J., Brumberg, V.H. (eds.) Relativity in Celestial Mechanics and Astrometry. High Precision Dynamical Theories and Observational Verifications. Proceedings IAU Symposium No. 114, p. 401. Reidel, Dordrecht (1986) Google Scholar
  228. Pugh, G.E.: WSEG research memorandum No. 11 (1959) Google Scholar
  229. Reigber, Ch., Schmidt, R., Flechtner, F., König, R., Meyer, U., Neumayer, K.-H., Schwintzer, P., Zhu, S.Y.: An Earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S. J. Geodyn. 39, 1 (2005) CrossRefGoogle Scholar
  230. Ries, J.C.: Relativity in satellite laser ranging. Bull. Am. Astron. Soc. 41, 889 (2009) Google Scholar
  231. Ries, J.C., Eanes, R.J., Watkins, M.M., Tapley, B.D.: Joint NASA/ASI Study on Measuring the Lense-Thirring Precession Using a Second LAGEOS Satellite CSR-89-3. Center for Space Research, Austin (1989) Google Scholar
  232. Ries, J.C., Eanes, R.J., Tapley, B.D.: In: Ruffini, R.J., Sigismondi, C. (eds.) Nonlinear Gravitodynamics. The Lense–Thirring Effect: Lense-Thirring Precession Determination from Laser Ranging to Artificial Satellites, p. 201. World Scientific, Singapore (2003a) Google Scholar
  233. Ries, J.C., Eanes, R.J., Tapley, B.D., Peterson, G.E.: Prospects for an improved Lense-Thirring test with SLR and the GRACE Gravity Mission, Greenbelt: NASA Goddard. In: Noomen, R., Klosko, S., Noll, C., Pearlman, M. (eds.) Proc. 13th Int. Laser Ranging Workshop, NASA CP (2003-212248). (2003b). Cited 20 Mar 2010
  234. Ries, J.C., Eanes, R.J., Watkins, M.M.: Confirming the frame-dragging effect with satellite laser ranging. In: Schillak, S. (ed.) Proc. 16th Int. Laser Ranging Workshop, Poznań (PL) 13–17 October 2008 (2008). Cited 20 Mar 2010
  235. Rindler, W.: Relativity. Special, General and Cosmological. Oxford University Press, Oxford (2001) zbMATHGoogle Scholar
  236. Ross, S.M.: Peirce’s criterion for the elimination of suspect experimental data. J. Eng. Technol. (Fall 2003) Google Scholar
  237. Roy, A.E.: Orbital Motion, 4th edn. Institute of Physics, Bristol (2005) Google Scholar
  238. Rubincam, D.P.: On the secular decrease in the semimajor axis of Lageos’s orbit. Celest. Mech. Dyn. Astron. 26, 361 (1982) zbMATHGoogle Scholar
  239. Ruggiero, M.L., Tartaglia, A.: Gravitomagnetic effects. Nuovo Cim. B 117, 743 (2002) ADSGoogle Scholar
  240. Schäfer, G.: Gravitomagnetic effects. Gen. Relativ. Gravit. 36, 2223 (2004) zbMATHADSCrossRefGoogle Scholar
  241. Schäfer, G.: Gravitomagnetism in physics and astrophysics. Space Sci. Rev. 148, 37 (2009) ADSCrossRefGoogle Scholar
  242. Schiff, L.I.: Possible new experimental test of general relativity theory. Phys. Rev. Lett. 4, 215 (1960a) ADSCrossRefGoogle Scholar
  243. Schiff, L.I.: On experimental tests of the general theory of relativity. Am. J. Phys. 28, 340 (1960b) MathSciNetADSCrossRefGoogle Scholar
  244. Schiff, L.I.: Motion of gyroscope according to Einsteins theory of gravitation. Proc. Natl. Acad. Sci. USA 46, 871 (1960c) zbMATHMathSciNetADSCrossRefGoogle Scholar
  245. Schulmann, R., Kox, A.J., Janssen, M., Illy, J. (eds.): The Collected Papers of Albert Einstein. Vol. 8. The Berlin Years: Correspondence, 1914–1918. Princeton University Press, Princeton (1998), Documents 361, 369, 401, 405 zbMATHGoogle Scholar
  246. Silbergleit, A.S., Conklin, J., DeBra, D., Dolphin, M., Keiser, G.M., Kozaczuk, J., Santiago, D., Salomon, M., Worden, P.: Polhode motion, trapped flux, and the GP-B science data analysis. Space Sci. Rev. 148, 397 (2009) ADSCrossRefGoogle Scholar
  247. Smith, D.E., Zuber, M.T., Sun, X., Neumann, G.A., Cavanaugh, J.F., McGarry, J.F., Zagwodzki, T.W.: Two-way laser link over interplanetary distance. Science 311, 53 (2006) CrossRefGoogle Scholar
  248. Smoot, G.F., Steinhardt, P.J.: Gravity’s rainbow. Gen. Relativ. Gravit. 25, 1095 (1993) ADSCrossRefGoogle Scholar
  249. Soffel, M.H.: Relativity in Astrometry, Celestial Mechanics and Geodesy. Springer, Berlin (1989) Google Scholar
  250. Soffel, M.H., Klioner, S.A., Petit, G., Wolf, P., Kopeikin, S.M., Bretagnon, P., Brumberg, V.A., Capitaine, N., et al.: The IAU 2000 resolutions for astrometry, celestial mechanics, and metrology in the relativistic framework: explanatory supplement. Astron. J. 126, 2687 (2003) ADSCrossRefGoogle Scholar
  251. Soffel, M.H., Klioner, S.A., Müller, J., Biskupek, L.: Gravitomagnetism and lunar laser ranging. Phys. Rev. D 78, 024033 (2008) ADSCrossRefGoogle Scholar
  252. Spergel, D.N., Verde, D.N., Peiris, H.V., Komatsu, E., Nolta, M.R., et al.: First Year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters. Astrophys. J. Suppl. 148, 175 (2003) ADSCrossRefGoogle Scholar
  253. Standish, E.M.: JPL planetary and lunar ephemerides. DE414 Interoffice Memo IOM 343R-06-002 (2006) Google Scholar
  254. Stedman, G.E., Schreiber, K.U., Bilger, H.R.: On the detectability of the Lense Thirring field from rotating laboratory masses using ring laser gyroscope interferometers. Class. Quantum Gravity 20, 2527 (2003) zbMATHADSCrossRefGoogle Scholar
  255. Stella, L., Possenti, A.: Lense-Thirring precession in the astrophysical context. Space Sci. Rev. 148, 105 (2009) ADSCrossRefGoogle Scholar
  256. Tapley, B.D., Ries, J.C., Bettadpur, S., Chambers, D., Cheng, M.K., Condi, F., Gunter, B., Kang, Z., Nagel, P., Pastor, R., Pekker, T., Poole, S., Wang, F.: GGM02-An improved Earth gravity field model from GRACE. J. Geodyn. 79, 467 (2005) ADSGoogle Scholar
  257. Tapley, B.D., Ries, J.C., Bettadpur, S., Chambers, D., Cheng, M.K., Condi, F., Poole, S.: In: Fall Meeting 2007, American Geophysical Union, Abstract #G42A-03 (2007) Google Scholar
  258. Tartaglia, A.: Geometric treatment of the gravitomagnetic clock effect. Gen. Relativ. Gravit. 32, 1745 (2000a) zbMATHMathSciNetADSCrossRefGoogle Scholar
  259. Tartaglia, A.: Detection of the gravitomagnetic clock effect. Class. Quantum Gravity 17, 783 (2000b) zbMATHMathSciNetADSCrossRefGoogle Scholar
  260. Tartaglia, A., Ruggiero, M.L.: Angular momentum effects in Michelson-Morley type experiments. Gen. Relativ. Gravit. 34, 1371 (2002) zbMATHMathSciNetCrossRefGoogle Scholar
  261. Tartaglia, A., Ruggiero, M.L.: Gravito-electromagnetism versus electromagnetism. Eur. J. Phys. 25, 203 (2004) zbMATHCrossRefGoogle Scholar
  262. Taylor, J.: Error Analysis, 2nd edn., p. 166. University Sci. Books, Sausalito (1997) Google Scholar
  263. Theiss, D.S.: A general relativistic effect of a rotating spherical mass and the possibility of measuring it in a space experiment. Phys. Lett. A 109, 19 (1985) MathSciNetADSCrossRefGoogle Scholar
  264. Thirring, H.: Über die formale Analogie zwischen den elektromagnetischen Grundgleichungen und den Einsteinschen Gravitationsgleichungen erster Näherung. Phys. Z. 19, 204 (1918a) Google Scholar
  265. Thirring, H.: Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie. Phys. Z. 19, 33 (1918b) Google Scholar
  266. Thirring, H.: Berichtigung zu meiner Arbeit: “Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie”. Phys. Z. 22, 29 (1921) Google Scholar
  267. Thorne, K.S., MacDonald, D.A., Price, R.H. (eds.): Black Holes: The Membrane Paradigm. Yale University Press, Yale (1986) Google Scholar
  268. Thorne, K.S.: Gravitomagnetism, jets in quasars, and the Stanford gyroscope experiment. In: Fairbank, J.D., Deaver, B.S., Everitt, C.W.F., Michelson, P.F. (eds.) Near Zero: New Frontiers of Physics, p. 573. Freeman, New York (1988) Google Scholar
  269. Tisserand, F.F.: Sur le mouvement des planètes au tour du Soleil, d’après la loi électrodynamique de Weber. C. R. Acad. Sci. (Paris) 75, 760 (1872) Google Scholar
  270. Tisserand, F.F.: Sur le mouvement des planètes, en supposant l’attraction représentée par l’une des lois électrodynamiques de Gauss ou de Weber. C. R. Acad. Sci. (Paris) 100, 313 (1890) Google Scholar
  271. Turyshev, S.G., Williams, J.G.: Space-based tests of gravity with laser ranging. Int. J. Mod. Phys. D 16, 2165 (2007) ADSCrossRefGoogle Scholar
  272. Turyshev, S.G., Shao, M., Nordtvedt, K., Dittus, H., Lämmerzahl, C., Theil, S., Salomon, C., Reynaud, S., Damour, T., Johann, U., Bouyer, P., Touboul, P., Foulon, B., Bertolami, O., Páramos, J.: Advancing fundamental physics with the laser astrometric test of relativity, the LATOR mission. Exp. Astron. 27, 27 (2009) ADSCrossRefGoogle Scholar
  273. Van Patten, R.A., Everitt, C.W.F.: Possible experiment with two counter-orbiting drag-free satellites to obtain a new test of Einstein’s general theory of relativity and improved measurements in geodesy. Phys. Rev. Lett. 36, 629 (1976a) ADSCrossRefGoogle Scholar
  274. Van Patten, R.A., Everitt, C.W.F.: A possible experiment with two counter-rotating drag-free satellites to obtain a new test of Einsteins general theory of relativity and improved measurements in geodesy. Celest. Mech. Dyn. Astron. 13, 429 (1976b) Google Scholar
  275. Vespe, F.: The perturbations of Earth penumbra on LAGEOS II perigee and the measurement of Lense-Thirring gravitomagnetic effect. Adv. Space Res. 23, 699 (1999) ADSCrossRefGoogle Scholar
  276. Vladimirov, Yu., Mitskiévic, N., Horský, J.: Space Time Gravitation, p. 91. Mir, Moscow (1987) Google Scholar
  277. Vrbik, J.: Zonal-harmonics perturbations. Celest. Mech. Dyn. Astron. 91, 217 (2005) zbMATHMathSciNetADSCrossRefGoogle Scholar
  278. Weber, J.: Gravitational waves. First Award at the 1959 Gravity Research Foundation Competion. Available from (1959)
  279. Weber, J.: Detection and generation of gravitational waves. Phys. Rev. 117, 306 (1960) zbMATHMathSciNetADSCrossRefGoogle Scholar
  280. Weber, J.: Evidence for discovery of gravitational radiation. Phys. Rev. Lett. 22, 1320 (1969) ADSCrossRefGoogle Scholar
  281. Weber, W.: Elektrodynamische Massbestimmungen über ein allgemeines Grundgesetz der elektrischen Wirkung. Abh. Kön. Sächsischen Ges. Wiss., p. 211 (1846) Google Scholar
  282. Wermuth, M., Svehla, D., Földvary, L., Gerlach, Ch., Gruber, T., Frommknecht, B., Peters, T., Rothacher, M., Rummel, R., Steigenberger, P.: A gravity field model from two years of CHAMP kinematic orbitsusing the energy balance approach. Presentation at EGU 1st General Assmbly, 25–30 April, Nice, France (2004) Google Scholar
  283. Whittaker, E.: A History of the Theories of Aether and Electricity, Vol. I: The Classical Theories. Harper, New York (1960) Google Scholar
  284. Will, C.M.: Theoretical frameworks for testing relativistic gravity II: parameterized post-Newtonian hydrodynamics and the Nordtvedt effect. Astrophys. J. 163, 611 (1971) MathSciNetADSCrossRefGoogle Scholar
  285. Will, C.M., Nordtvedt, K. Jr.: Conservation laws and preferred frames in relativistic gravity I. Astrophys. J. 177, 757 (1972) MathSciNetADSCrossRefGoogle Scholar
  286. Will, C.M.: Theory and Experiment in Gravitational Physics. Cambridge University Press, Cambridge (1993). Revised edn. zbMATHGoogle Scholar
  287. Will, C.M.: The confrontation between general relativity and experiment. Living Rev. Relativ. 9, 3 (2006) Cited 29 Jul 2010. ADSGoogle Scholar
  288. Williams, R.K.: Extracting X rays, γ rays, and relativistic ee+ pairs from supermassive Kerr black holes using the Penrose mechanism. Phys. Rev. D 51, 5387 (1995) ADSCrossRefGoogle Scholar
  289. Williams, R.K.: Collimated escaping vortical polar ee+ jets intrinsically produced by rotating black holes and Penrose processes. Astrophys. J. 611, 952 (2004) ADSCrossRefGoogle Scholar
  290. Yilmaz, H.: Proposed test of the nature of gravitational interaction. Bull. Am. Phys. Soc. 4, 65 (1959) Google Scholar
  291. Yoder, C.F.: Astrometric and geodetic properties of Earth and the solar system. Table 6. In: Ahrens, T.J. (ed.) Global Earth Physics a Handbook of Physical Constants. AGU Reference Shelf Series, Vol. 1 (1995) Google Scholar
  292. You, R.J.: The gravitational Larmor precession of the Earth’s artificial satellite orbital motion. Boll. Geod. Sci. Affini 57, 453 (1998) Google Scholar
  293. Yuan, D.-N., Sjogren, W.L., Konopliv, A.S., Kucinskas, A.B.: Gravity field of Mars: a 75th degree and order model. J. Geophys. Res. 106, 23377 (2001) ADSCrossRefGoogle Scholar
  294. Zel’dovich, Ya.B.: Analog of the Zeeman effect in the gravitational field of a rotating star. J. Exp. Theor. Phys. Lett. 1, 95 (1965) Google Scholar
  295. Zel’dovich, Ya.B., Novikov, I.D.: Stars and Relativity. The University of Chicago Press, Chicago (1971) Google Scholar
  296. Zerbini, S.: In: Mueller, I.I., Zerbini, S. (eds.) The Interdisciplinary Role of Space Geodesy. Proceedings of an International Workshop “Ettore Majorana” Center for Scientific Culture, International School of Geodesy-Director, Enzo Boschi-Erice, Sicily, Italy, July 23–29, 1988, p. 269. Springer, Berlin (1989). Appendix 5. The LAGEOS II project Google Scholar
  297. Zuber, M.T., Smith, D.E.: One-way ranging to the planets. In: Proc. 16-th International Workshop on Laser Ranging, Poznań, Poland, October 12–17 2008. Cited 20 Mar 2010

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Lorenzo Iorio
    • 1
    Email author
  • Herbert I. M. Lichtenegger
    • 2
  • Matteo Luca Ruggiero
    • 3
  • Christian Corda
    • 4
    • 5
  1. 1.Ministero dell’istruzione, dell’Università e della Ricerca (M.I.U.R.)BariItaly
  2. 2.Institut für WeltraumforschungÖsterreichische Akademie der WissenschaftenGrazAustria
  3. 3.Dipartimento di FisicaPolitecnico di Torino, and INFN-Sezione di TorinoTorinoItaly
  4. 4.Associazione Scientifica Galileo GalileiPratoItaly
  5. 5.Institute for Basic ResearchPalm HarborUSA

Personalised recommendations