Advertisement

Astrophysics and Space Science

, Volume 331, Issue 1, pp 243–255 | Cite as

Spinor model of a perfect fluid and their applications in Bianchi type-I and FRW models

  • Bijan Saha
Original Article

Abstract

Different characteristic of matter influencing the evolution of the Universe has been simulated by means of a nonlinear spinor field. Exploiting the spinor description of perfect fluid and dark energy evolution of the Universe given by an anisotropic Bianchi type-I (BI) or isotropic Friedmann-Robertson-Walker (FRW) one has been studied.

Keywords

Spinor field Perfect fluid Dark energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armendáriz-Picón, C., Greene, P.B.: Gen. Relativ. Gravit. 35, 1637 (2003) zbMATHCrossRefADSGoogle Scholar
  2. Bento, M.C., Bertolami, O., Sen, A.A.: Phys. Rev. D 66, 043507 (2002) ADSGoogle Scholar
  3. Bilic, N., Tupper, G.B., Viollier, R.D.: Phys. Lett. B 353, 17 (2002) ADSGoogle Scholar
  4. Brans, C., Dicke, R.H.: Phys. Rev. 124, 925 (1961) zbMATHCrossRefMathSciNetADSGoogle Scholar
  5. Brill, D.R., Wheeler, J.A.: Rev. Mod. Phys. 29, 465 (1957) zbMATHCrossRefMathSciNetADSGoogle Scholar
  6. Bronnikov, K.A., Chudaeva, E.N., Shikin, G.N.: Class. Quantum Gravity 21, 3389 (2004) zbMATHCrossRefMathSciNetADSGoogle Scholar
  7. Cai, Y., Wang, J.: Dark energy model with spinor matter and its quintom scenario. arXiv:0806.3890 [gr-qc] (2008)
  8. Cai, Y., Qiu, T., Piao, Y., Li, M., Zhang, X.: Bouncing universe with quintom matter. arXiv:0704.1090 [gr-qc] (2007)
  9. Caldwell, R.R., Dave, R., Steinhardt, P.J.: Phys. Rev. Lett. 80, 1582 (1998) CrossRefADSGoogle Scholar
  10. Cardenas, V.H.: Phys. Rev. D 73, 103512 (2006) CrossRefADSGoogle Scholar
  11. Cardenas, R., Gonzalez, T., Leiva, Y., Martin, O., Quiros, I.: Phys. Rev. D 67, 083501 (2003) ADSGoogle Scholar
  12. Chimento, L.P., Jakubi, A.S., Pavon, D., Zimdahl, W.: Phys. Rev. D 67, 083513 (2003) ADSGoogle Scholar
  13. Copeland, E.J., Garousi, M.R., Sami, M., Tsujikawa, S.: Phys. Rev. D 71, 043003 (2005) ADSGoogle Scholar
  14. Dabrowski, M.P.: Phantom dark energy and its cosmological consequences. gr-qc/0701057v1 (2007)
  15. de Souza, R.C., Kremer, G.M.: Class. Quantum Gravity 25, 225006 (2008) CrossRefADSGoogle Scholar
  16. Dev, A., Alcaniz, J.S., Jain, D.: Phys. Rev. D 67, 023515 (2003) ADSGoogle Scholar
  17. Diego, J.M., Sliwa, W., Silk, J., Barcons, X., Voges, W.: Mon. Not. R. Astron. Soc. 344, 951 (2003) CrossRefADSGoogle Scholar
  18. Einstein, A.: Sitzungsber. Preuss. Acad. Wiss. 1, 142 (1917) Google Scholar
  19. Einstein, A.: Sitzungsber. Preuss. Acad. Wiss. 1, 349 (1919) Google Scholar
  20. Fabris, J.C., Goncalves, S.V.B., de Souza, P.E.: Gen. Relativ. Gravit. 34, 53 (2002) zbMATHCrossRefGoogle Scholar
  21. Fay, S.: Gen. Relativ. Gravit. 32, 187 (2000) zbMATHCrossRefMathSciNetADSGoogle Scholar
  22. Felder, G., Frolov, A., Kofman, L., Linde, A.: Phys. Rev. D 66, 023507 (2002) MathSciNetADSGoogle Scholar
  23. Feng, B., Wang, X., Zhang, X.: Phys. Lett. B 607, 35 (2005) ADSGoogle Scholar
  24. Fierz, M.: Z. Phys. A, Hadrons Nucl. 104, 553 (1937) Google Scholar
  25. Finkelstein, R., LeLevier, R., Ruderman, M.: Phys. Rev. 83, 326 (1951) zbMATHCrossRefMathSciNetADSGoogle Scholar
  26. Friedmann, A.A.: Z. Phys. 10, 377 (1922) ADSGoogle Scholar
  27. Friedmann, A.A.: Z. Phys. 21, 326 (1924) MathSciNetADSGoogle Scholar
  28. Gannouji, R., Polarski, D., Ranquet, A., Starobinsky, A.A.: J. Cosmol. Astropart. Phys. 09, 016 (2006) CrossRefADSGoogle Scholar
  29. Gannouji, R., Polarski, D., Ranquet, A., Starobinsky, A.A.: Scalar-tensor dark energy models. arXiv:astro-ph/0701650v1 (2007)
  30. Gonzalez, T., Quiros, I.: Exact models with non-minimal interaction between dark matter and (either phanton or quintessence) dark energy. arXiv:0707.2089v1 [gr-qc] (2007)
  31. Gross, D.J., Neveu, A.: Phys. Rev. D 10, 3235 (1974) CrossRefADSGoogle Scholar
  32. Guth, A.: Phys. Rev. D 23, 347 (1981) ADSGoogle Scholar
  33. Heisenberg, W.: Physica 19, 897 (1953) zbMATHCrossRefMathSciNetADSGoogle Scholar
  34. Heisenberg, W.: Rev. Mod. Phys. 29, 269 (1957) zbMATHCrossRefMathSciNetADSGoogle Scholar
  35. Henneaux, M.: Phys. Rev. D 21, 857 (1980) MathSciNetADSGoogle Scholar
  36. Jordan, P.: Z. Phys. A, Hadrons Nucl. 157, 112 (1959) Google Scholar
  37. Kamenshchik, A.Yu., Moschella, U., Pasquier, V.: Phys. Lett. B 511, 265 (2001) zbMATHADSGoogle Scholar
  38. Kibble, T.W.B.: J. Math. Phys. 2, 212 (1961) zbMATHCrossRefMathSciNetADSGoogle Scholar
  39. Krechet, V.G., Fel’chenkov, M.L., Shikin, G.N.: Gravit. Cosmol. 14(55), 292 (2008) zbMATHCrossRefMathSciNetADSGoogle Scholar
  40. Olivares, G., Atrio-Barandela, F., Pavon, D.: Phys. Rev. D 71, 063523 (2005) ADSGoogle Scholar
  41. Padmanabhan, T.: Phys. Rep. 380, 235 (2003) zbMATHCrossRefMathSciNetADSGoogle Scholar
  42. Pauli, W.: Ann. Phys. 5(18), 23 (1933) Google Scholar
  43. Pavon, D., Sen, S., Zimdahl, W.: J. Cosmol. Astropart. Phys. 0405, 009 (2004) CrossRefADSGoogle Scholar
  44. Ribas, V.O., Devecchi, F.P., Kremer, G.M.: Phys. Rev. D 72, 123502 (2005) ADSGoogle Scholar
  45. Rubano, C., Scudellaro, P., Piedipalumbo, E.: Phys. Rev. D 68, 123501 (2003) ADSGoogle Scholar
  46. Saha, B.: Phys. Rev. D 64, 123501 (2001a) MathSciNetADSGoogle Scholar
  47. Saha, B.: Mod. Phys. Lett. A 16, 1287 (2001b) zbMATHCrossRefMathSciNetADSGoogle Scholar
  48. Saha, B.: Phys. Rev. D 69, 124006 (2004) MathSciNetADSGoogle Scholar
  49. Saha, B.: Chin. J. Phys. 43(6), 1035 (2005) MathSciNetGoogle Scholar
  50. Saha, B.: Astrophys. Space Sci. 302, 83 (2006a) zbMATHCrossRefADSGoogle Scholar
  51. Saha, B.: Int. J. Theor. Phys. 45(5), 983 (2006b) zbMATHCrossRefMathSciNetGoogle Scholar
  52. Saha, B.: Phys. Part. Nucl. 37(Suppl. 1), S13 (2006c) CrossRefGoogle Scholar
  53. Saha, B.: Phys. Rev. D 74, 124030 (2006d) MathSciNetADSGoogle Scholar
  54. Saha, B.: Gravit. Cosmol. 12(2–3), 215 (2006e) zbMATHADSGoogle Scholar
  55. Saha, B.: Rom. Rep. Phys. 59(2), 649 (2007) Google Scholar
  56. Saha, B.: Spinor model of a perfect fluid. Cent. Eur. J. Phys. (2010a). doi: 10.2478/s11534-010-0019-7. arXiv:0901.1387 [gr-qc]
  57. Saha, B.: Rom. Rep. Phys. 62(1), 209 (2010b) Google Scholar
  58. Saha, B., Boyadjiev, T.: Phys. Rev. D 69, 124010 (2004) MathSciNetADSGoogle Scholar
  59. Saha, B., Shikin, G.N.: Gen. Relativ. Gravit. 29, 1099 (1997a) zbMATHCrossRefMathSciNetADSGoogle Scholar
  60. Saha, B., Shikin, G.N.: J. Math. Phys. 38, 5305 (1997b) zbMATHCrossRefMathSciNetADSGoogle Scholar
  61. Sahni, V.: Lect. Not. Phys. 653, 141 (2004) ADSGoogle Scholar
  62. Sahni, V., Starobinsky, A.A.: Int. J. Mod. Phys. D 9, 373 (2000) ADSGoogle Scholar
  63. Sahni, V., Saini, T.D., Starobinsky, A.A., Alam, U.: JETP Lett. 77, 243 (2003) CrossRefGoogle Scholar
  64. Sen, A.: J. High Energy Phys. 0204, 048 (2002a) CrossRefADSGoogle Scholar
  65. Sen, A.: Mod. Phys. Lett. A 17, 1797 (2002b) zbMATHCrossRefADSGoogle Scholar
  66. Shao, Y., Gui, Y.: Statefinder parameters for tachyon dark energy model. arXiv:gr-qc/0703111v1 (2007)
  67. Shao, Y., Gui, Y.X., Wang, W.: Mod. Phys. Lett. A 22, 1175 (2007) zbMATHCrossRefADSGoogle Scholar
  68. Srivastava, S.K.: Tachyon as a dark energy. arXiv:gr-qc/0409074v4 (2004)
  69. Steinhardt, P.J., Turok, N.: Phys. Rev. D 65, 126003 (2002) MathSciNetADSGoogle Scholar
  70. Weldon, H.A.: Fermions without vierbeins in curved space-time. gr-qc/0009086 (2000)
  71. Will, C.M.: Theory and Experiment in Gravitational Physics. Cambridge University Press, Cambridge (2001). arXiv:gr-qc/0103036 Google Scholar
  72. Zlatev, I., Wang, L., Steinhardt, P.J.: Phys. Rev. Lett. 85, 896 (1999) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Laboratory of Information TechnologiesJoint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations