Advertisement

Astrophysics and Space Science

, Volume 322, Issue 1–4, pp 141–146 | Cite as

Using the Rayleigh-Taylor instability for in situ measurements of thermal conductivity of warm dense matter

  • D. D. RyutovEmail author
  • B. A. Remington
Original Article

Abstract

The Rayleigh-Taylor (RT) instability of a material with stratified density, temperature, and composition is considered. The variation of composition gives rise to the appearance of modes whose growth rate is directly related to the finite thermal conductivity. It is suggested that this effect could be used for in situ measurements of thermal conductivity of warm dense matter. Expressions for the RT growth rate for the general equation of state are derived and the modes most suitable for measurements are identified. A desired perturbation can be introduced by machining the package or by using masks during the surface deposition process. To visualize the evolution of the embedded perturbation, higher-Z tracers can be used. A concept for a laser-driven experiment where this approach could be realized is presented.

Keywords

Warm dense matter Thermal conductivity Equation of state 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Budil, K.S., Remington, B.A., Peyser, T.A., Mikaelian, K.O., Miller, P.L., Woolsey, N.C., Wood-Vasey, W.M., Rubenchik, A.M.: Phys. Rev. Lett. 76, 4536 (1996). doi: 10.1103/PhysRevLett.76.4536 CrossRefADSGoogle Scholar
  2. Catto, P.J.: Phys. Fluids 21, 30 (1978). doi: 10.1063/1.862067 zbMATHCrossRefADSMathSciNetGoogle Scholar
  3. Celliers, P.M., Collins, G.W., Hicks, D.G., Koenig, M., : Phys. Plasmas 11, L41 (2004). doi: 10.1063/1.1758944 CrossRefADSGoogle Scholar
  4. Glendinning, S.G., Dixit, S.N., Hammel, B.A., Kalantar, D.H., Key, M.H., Kilkenny, J.D., Knauer, J.P., Pennington, D.M., Remington, B.A., Wallace, R.J., Weber, S.V.: Phys. Rev. Lett. 78, 3318 (1997). doi: 10.1103/PhysRevLett.78.3318 CrossRefADSGoogle Scholar
  5. Knudson, M.D., Hanson, D.L., Bailey, J.E., Hall, C.A., Asay, J.R.: Phys. Rev. Lett. 90, 035505 (2003). doi: 10.1103/PhysRevLett.90.035505 CrossRefADSGoogle Scholar
  6. Koenig, M., Benuzzi-Mounaix, A., Batani, D., Hall, T., Nazarov, W.: Phys. Plasmas 12, 012706 (2005) doi: 10.1063/1.1830488 CrossRefADSGoogle Scholar
  7. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Pergamon Press, New York (1987) Google Scholar
  8. Lindl: J. Phys. Plasmas 2, 3933 (1995). doi: 10.1063/1.871025 CrossRefADSGoogle Scholar
  9. Lorenz, K.T., Edwards, M.J., Glendinning, S.G., Jankowski, A.F., McNaney, J., Pollaine, S.M., Remington, B.A.: Phys. Plasmas 12, 056309 (2005). doi: 10.1063/1.1873812 CrossRefADSGoogle Scholar
  10. Remington, B.A., Weber, S.V., Marinak, M.M., Haan, S.W., Kilkenny, J.D., Wallace, R.J., Dimonte, G.: Phys. Plasmas 2, 241 (1995). doi: 10.1063/1.871096 CrossRefADSGoogle Scholar
  11. Remington, B.A., Drake, R.P., Ryutov, D.D.: Rev. Mod. Phys. 78, 755 (2006). doi: 10.1103/RevModPhys.78.755 CrossRefADSGoogle Scholar
  12. Ryutov, D.D.: Phys. Plasmas 7, 4797 (2000). doi: 10.1063/1.1321316 CrossRefADSMathSciNetGoogle Scholar
  13. Widmann, K., Ao, T., Foord, M.E., Price, D.F., Ellis, A.D., Springer, P.T., Ng, A.: Phys. Rev. Lett. 92, 125002 (2004). doi: 10.1103/PhysRevLett.92.125002 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Lawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations