Astrophysics and Space Science

, Volume 326, Issue 2, pp 281–291 | Cite as

Inertia and a fifth dimension—special relativity from a new perspective

  • C. Johan MasreliezEmail author
Original Article


The phenomenon of inertia is modeled by a new process, which semi-discretely changes the metrical scale of spacetime. This process explains inertia as a curved spacetime phenomenon, since all accelerating trajectories take place on geodesics of general relativity. By this approach inertial reference frames are Minkowskian manifolds imbedded in a five-dimensional space. It would imply a revised interpretation of special relativity, which preserves a universal temporal reference. If acceleration curves spacetime, it would also imply the existence of an energy-momentum tensor with net energy, which under certain conditions could become negative.

Origin of inertia Dynamic spacetime scale Special relativity Dynamic metrics Kaluza–Klein Absolute time Inertial field energy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ernst, A., Hsu, J.-P.: Chin. J. Phys. 39(3) (2001) Google Scholar
  2. Essen, L.: Electron. Wir. World 94, 238 (1988) Google Scholar
  3. Hafele, J.: Proc. 3rd Dept. Def. PTTI Meeting, pp. 261–288 (1971) Google Scholar
  4. Hafele, J., Keating, R.: Science 177(4044), 168–170 (1972) CrossRefADSGoogle Scholar
  5. Kelly, A.G.: Reliability of Relativistic Effect Tests on Airborne Clocks, Monograph No. 3 Feb. 1996. The Institution of Engineers of Ireland, ISBN 1-898012-22-9 (1996) Google Scholar
  6. Kennedy, R.J., Thorndike, E.M.: Experimental establishment of the relativity of time. Phys. Rev. 42, 400–418 (1932) zbMATHCrossRefADSGoogle Scholar
  7. Kündig, W.: Phys. Rev. 129(6), 2371–2375 (1963) CrossRefADSGoogle Scholar
  8. Masreliez, C.J.: The scale expanding cosmos theory. Astrophys. Space Sci. 266(3), 399–447 (1999) zbMATHCrossRefADSGoogle Scholar
  9. Masreliez, C.J.: Scale expanding cosmos theory I—An Introduction. Apeiron April (2004a) Google Scholar
  10. Masreliez, C.J.: Scale expanding cosmos theory II—Cosmic Drag. Apeiron Oct. (2004b) Google Scholar
  11. Masreliez, C.J.: Scale expanding cosmos theory III—Gravitation. Apeiron Oct. (2004c) Google Scholar
  12. Masreliez, C.J.: Scale expanding cosmos theory IV—A possible link between General Relativity and Quantum Mechanics. Apeiron Jan. (2005) Google Scholar
  13. Masreliez, C.J.: On the origin of inertial force. Apeiron Jan. (2006b) Google Scholar
  14. Masreliez, C., J.: Does cosmological scale expansion explain the universe? Phys. Essays, March (2006c) Google Scholar
  15. Masreliez, C.J.: Motion, inertia and special relativity—a novel perspective. Phys. Scr. 75, 119–125 (2007a) zbMATHCrossRefMathSciNetADSGoogle Scholar
  16. Masreliez, C.J.: Dynamic incremental scale transition with application to physics and cosmology. Phys. Scr. 76, 86–493 (2007b) CrossRefMathSciNetGoogle Scholar
  17. Masreliez, C.J.: Special relativity and inertia in curved spacetime. Adv. Stud. Theor. Phys. 2(17), 795–815 (2008) zbMATHMathSciNetGoogle Scholar
  18. Masreliez, C.J.: Inertial field energy. Adv. Stud. Theor. Phys. 2(17), 795–815 (2009) MathSciNetGoogle Scholar
  19. Wesson, P.: Five-Dimensional Physics. World Scientific, Singapore (2006) zbMATHGoogle Scholar
  20. Wesson, P.: Space-Time Matter. World Scientific, Singapore (2007) zbMATHGoogle Scholar
  21. Voigt, W.: Gött. Nachr. 7, 41–51 (1887) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.RedmondUSA

Personalised recommendations