Astrophysics and Space Science

, Volume 325, Issue 2, pp 259–275 | Cite as

Effect of a varying gravitational constant on the SN Ia Hubble diagram, AGN luminosity evolution, and X-ray source counts

  • Roman Tomaschitz
Original Article


The impact of a cosmic time evolution of the gravitational constant on SN Ia luminosity and AGN/QSO luminosity functions is studied. The gravitational constant scales linearly with the Hubble parameter, its present-day variation being \(\dot{G}_{0}/G_{0}\approx 1.9\times 10^{-4}\)  Gyr−1, compatible with current bounds from lunar laser ranging. Distance moduli of Type Ia supernovae are fitted with a cosmic expansion factor derived from temperature variations of planetary paleoclimates, and a luminosity dependence on look-back time proportional to the varying gravitational constant is inferred from the Hubble diagram. A fit is performed to the comoving space density of X-ray-selected active galactic nuclei (AGNs) and optically selected quasars (QSOs) extending to redshifts z≈6. The initial steep increase of the AGN space density is reproduced by a redshift evolution depending solely on the Hubble parameter as scaling variable. The AGN luminosity scales with the Hubble parameter, and the scaling exponents of the luminosity function, composed of two competing power laws with exponential cutoff, are obtained. Based on the AGN luminosity function, flux-limited X-ray source counts are investigated. The counting functions are derived and put to test by fitting cumulative number counts of soft X-ray point sources compiled from ROSAT, XMM-Newton, and Chandra surveys.

Cosmic time scaling of Newton’s constant Robertson–Walker cosmology Hubble diagram of Type Ia supernovae Active galactic nuclei Luminosity function and comoving space density Number counts of X-ray point sources 


98.80.Es 98.62.Py 98.62.Ve 95.30.Sf 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amsler, C., et al.: Review of particle physics. Phys. Lett. B 667, 1 (2008) CrossRefADSGoogle Scholar
  2. Babbedge, T.S.R., et al.: Luminosity functions for galaxies and quasars in the Spitzer Wide-Area Infrared Extra-galactic (SWIRE) Legacy survey. Mon. Not. R. Astron. Soc. 370, 1159 (2006) CrossRefADSGoogle Scholar
  3. Baldi, A., et al.: The HELLAS2XMM Survey. I. The X-ray data and the log N–log S relation. Astrophys. J. 564, 190 (2002) CrossRefADSGoogle Scholar
  4. Bauer, F.E., et al.: The fall of active galactic nuclei and the rise of star-forming galaxies: a close look at the Chandra Deep Field X-ray number counts. Astron. J. 128, 2048 (2004) CrossRefADSGoogle Scholar
  5. Brunner, H., et al.: XMM-Newton observations of the Lockman Hole: X-ray source catalogue and number counts. Astron. Astrophys. 479, 283 (2008) CrossRefADSGoogle Scholar
  6. Cappelluti, N., et al.: The XMM-Newton Wide-Field Survey in the COSMOS Field. II. X-ray data and the log N–log S relations. Astrophys. J. Suppl. 172, 341 (2007) CrossRefADSGoogle Scholar
  7. Cappelluti, N., et al.: The XMM-Newton wide-field survey in the COSMOS field. The point-like X-ray source catalogue. Astron. Astrophys. 497, 635 (2009) CrossRefADSGoogle Scholar
  8. Carrera, F.J., et al.: The XMM-Newton serendipitous survey. III. The AXIS X-ray source counts and angular clustering. Astron. Astrophys. 469, 27 (2007) CrossRefADSGoogle Scholar
  9. Cowan, J.J., Sneden, C.: Heavy element synthesis in the oldest stars and the early Universe. Nature 440, 1151 (2006) CrossRefADSGoogle Scholar
  10. Croom, M.S., et al.: The 2dF QSO Redshift Survey—XII. The spectroscopic catalogue and luminosity function. Mon. Not. R. Astron. Soc. 349, 1397 (2004) CrossRefADSGoogle Scholar
  11. Dauphas, N.: The U/Th production ratio and the age of the Milky Way from meteorites and Galactic halo stars. Nature 435, 1203 (2005) CrossRefADSGoogle Scholar
  12. Dirac, P.A.M.: A new basis for cosmology. Proc. R. Soc. (Lond.) A 165, 199 (1938) CrossRefADSGoogle Scholar
  13. Dyson, F.J.: The fundamental constants and their time variation. In: Salam, A., Wigner, E.P. (eds.) Aspects of Quantum Theory. Cambridge University Press, Cambridge (1972) Google Scholar
  14. Elvis, M., et al.: The Chandra COSMOS Survey, I: overview and point source catalog. Astrophys. J. Suppl. 184, 158 (2009) CrossRefADSGoogle Scholar
  15. Fan, X., et al.: High-redshift quasars found in Sloan Digital Sky Survey commissioning data. III. A color-selected sample at i *<20 in the Fall Equatorial Stripe. Astron. J. 121, 31 (2001) CrossRefADSGoogle Scholar
  16. Fan, X., et al.: A survey of z>5.7 quasars in the Sloan Digital Sky Survey. III. Discovery of five additional quasars. Astron. J. 128, 515 (2004) CrossRefADSGoogle Scholar
  17. Ferrarese, L., et al.: The Hubble Space Telescope Key Project on the extragalactic distance scale. XXVI. The calibration of Population II secondary distance indicators and the value of the Hubble constant. Astrophys. J. 529, 745 (2000) CrossRefADSGoogle Scholar
  18. Gallagher, J.S., et al.: Supernovae in early-type galaxies: directly connecting age and metallicity with Type Ia luminosity. Astrophys. J. 685, 752 (2008) CrossRefADSGoogle Scholar
  19. Gilli, R., Comastri, A., Hasinger, G.: The synthesis of the cosmic X-ray background in the Chandra and XMM-Newton era. Astron. Astrophys. 463, 79 (2007) CrossRefADSGoogle Scholar
  20. Guenther, D.B., Krauss, L.M., Demarque, P.: Testing the constancy of the gravitational constant using helioseismology. Astrophys. J. 498, 871 (1998) CrossRefADSGoogle Scholar
  21. Hasinger, G., et al.: The ROSAT Deep Survey. I. X-ray sources in the Lockman Field. Astron. Astrophys. 329, 482 (1998) ADSGoogle Scholar
  22. Hasinger, G., Miyaji, T., Schmidt, M.: Luminosity-dependent evolution of soft X-ray selected AGN. New Chandra and XMM-Newton surveys. Astron. Astrophys. 441, 417 (2005) CrossRefADSGoogle Scholar
  23. Jimenez, R., et al.: Constraints on the equation of state of dark energy and the Hubble constant from stellar ages and the cosmic microwave background. Astrophys. J. 593, 622 (2003) CrossRefADSGoogle Scholar
  24. Kasting, J.F., Catling, D.: Evolution of a habitable planet. Annu. Rev. Astron. Astrophys. 41, 429 (2003) CrossRefADSGoogle Scholar
  25. Kessler, R., et al.: First-year Sloan Digital Sky Survey-II supernova results: Hubble diagram and cosmological parameters. Astrophys. J. Suppl. 185, 32 (2009) CrossRefGoogle Scholar
  26. Komatsu, E., et al.: Five-year Wilkinson Microwave Anisotropy Probe observations: cosmological interpretation. Astrophys. J. Suppl. 180, 330 (2009) CrossRefADSGoogle Scholar
  27. Kowalski, M., et al.: Improved cosmological constraints from new, old, and combined supernova datasets. Astrophys. J. 686, 749 (2008) CrossRefADSGoogle Scholar
  28. Lehmer, B.D., et al.: The Extended Chandra Deep Field-South Survey: Chandra point- source catalogs. Astrophys. J. Suppl. 161, 21 (2005) CrossRefADSGoogle Scholar
  29. Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics. Springer, New York (1966) zbMATHGoogle Scholar
  30. Miyaji, T., Hasinger, G., Schmidt, M.: Soft X-ray AGN luminosity function from ROSAT surveys. II. Table of the binned soft X-ray luminosity function. Astron. Astrophys. 369, 49 (2001) CrossRefADSGoogle Scholar
  31. Moretti, A., et al.: The resolved fraction of the cosmic X-ray background. Astrophys. J. 588, 696 (2003) CrossRefADSGoogle Scholar
  32. Müller, J., Biskupek, L.: Variations of the gravitational constant from lunar laser ranging data. Class. Quantum Gravity 24, 4533 (2007) zbMATHCrossRefGoogle Scholar
  33. Newman, M.J., Rood, R.T.: Implications of solar evolution for the Earth’s early atmosphere. Science 198, 1035 (1977) CrossRefADSGoogle Scholar
  34. Percival, W.J., et al.: Baryon acoustic oscillations in the Sloan Digital Sky Survey Data Release 7 galaxy sample. Mon. Not. R. Astron. Soc. (2009). arXiv:0907.1660
  35. Puccetti, S., et al.: The XMM-Newton survey of the ELAIS-S1 field. I. Number counts, angular correlation function and X-ray spectral properties. Astron. Astrophys. 457, 501 (2006) CrossRefADSGoogle Scholar
  36. Reid, B.A., et al.: Cosmological constraints from the clustering of the Sloan Digital Sky Survey DR7 luminous red galaxies. Mon. Not. R. Astron. Soc. (2009). arXiv:0907.1659
  37. Richards, G.T., et al.: The Sloan Digital Sky Survey quasar survey: quasar luminosity function from Data Release 3. Astron. J. 131, 2766 (2006) CrossRefADSGoogle Scholar
  38. Riess, A.G., et al.: Type Ia supernova discoveries at z>1 from the Hubble Space Telescope: evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 607, 665 (2004) CrossRefADSGoogle Scholar
  39. Riess, A.G., et al.: New Hubble Space Telescope discoveries of Type Ia supernovae at z≥1: narrowing constraints on the early behavior of dark energy. Astrophys. J. 659, 98 (2007) CrossRefADSGoogle Scholar
  40. Rosati, P., et al.: The Chandra Deep Field-South: the 1 million second exposure. Astrophys. J. 566, 667 (2002) CrossRefADSGoogle Scholar
  41. Sandage, A.: Observational tests of world models. Annu. Rev. Astron. Astrophys. 26, 561 (1988) CrossRefADSGoogle Scholar
  42. Sandage, A.: Practical cosmology: inventing the past. In: Binggeli, B., Buser, R. (eds.) The Deep Universe. Springer, Berlin (1995) Google Scholar
  43. Sandage, A., et al.: The Hubble constant: a summary of the Hubble Space Telescope program for the luminosity calibration of Type Ia supernovae by means of Cepheids. Astrophys. J. 653, 843 (2006) CrossRefADSGoogle Scholar
  44. Schatz, H., et al.: Thorium and uranium chronometers applied to CS 31082-001. Astrophys. J. 579, 626 (2002) CrossRefADSGoogle Scholar
  45. Schmidt, M., Schneider, D.P., Gunn, J.E.: Spectroscopic CCD surveys for quasars at large redshift. IV. Evolution of the luminosity function from quasars detected by their Lyman-alpha emission. Astron. J. 110, 68 (1995) CrossRefADSGoogle Scholar
  46. Silverman, J.D., et al.: Comoving space density of X-ray-selected active galactic nuclei. Astrophys. J. 624, 630 (2005) CrossRefADSGoogle Scholar
  47. Silverman, J.D., et al.: The luminosity function of X-ray-selected active galactic nuclei: evolution of supermassive black holes at high redshift. Astrophys. J. 679, 118 (2008) CrossRefADSGoogle Scholar
  48. Sneden, C., et al.: Neutron-capture element abundances in the globular cluster M15. Astrophys. J. 536, L85 (2000) CrossRefADSGoogle Scholar
  49. Stritzinger, M., et al.: Constraints on the progenitor systems of Type Ia supernovae. Astron. Astrophys. 450, 241 (2006a) CrossRefADSGoogle Scholar
  50. Stritzinger, M., et al.: Consistent estimates of 56Ni yields for Type Ia supernovae. Astron. Astrophys. 460, 793 (2006b) CrossRefADSGoogle Scholar
  51. Tomaschitz, R.: Ether, luminosity and galactic source counts. Astrophys. Space Sci. 259, 255 (1998) zbMATHCrossRefADSGoogle Scholar
  52. Tomaschitz, R.: Cosmic time variation of the gravitational constant. Astrophys. Space Sci. 271, 181 (2000) zbMATHCrossRefADSGoogle Scholar
  53. Tomaschitz, R.: Faint young Sun, planetary paleoclimates and varying fundamental constants. Int. J. Theor. Phys. 44, 195 (2005) zbMATHCrossRefGoogle Scholar
  54. Ueda, Y., et al.: Cosmological evolution of the hard X-ray active galactic nucleus luminosity function and the origin of the hard X-ray background. Astrophys. J. 598, 886 (2003) CrossRefADSGoogle Scholar
  55. Ueda, Y., et al.: The Subaru/XMM-Newton Deep Survey (SXDS). III. X-ray data. Astrophys. J. Suppl. 179, 124 (2008) CrossRefADSGoogle Scholar
  56. Wall, J.V., et al.: The Parkes quarter-Jansky flat-spectrum sample. III. Space density and evolution of QSOs. Astron. Astrophys. 434, 133 (2005) CrossRefADSGoogle Scholar
  57. Williams, J.G., et al.: Lunar laser ranging science: gravitational physics and lunar interior and geodesy. Adv. Space Res. 37, 67 (2006) CrossRefADSGoogle Scholar
  58. Wolf, C., et al.: The evolution of faint AGN between z≈1 and z≈5 from the COMBO-17 survey. Astron. Astrophys. 408, 499 (2003) CrossRefADSGoogle Scholar
  59. Wood-Vasey, W.M., et al.: Observational constraints on the nature of dark energy: first cosmological results from the ESSENCE Supernova Survey. Astrophys. J. 666, 694 (2007) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of PhysicsHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations