Skip to main content
Log in

A Moon-borne electromagnetic calorimeter

  • ORIGINAL ARTICLE
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

We discuss an electromagnetic sampling calorimeter for the detection of very high energy gamma-rays on the Moon, which is based on the use of scintillating cylinders and plates imbedded in the lunar soil. The use of lunar soil as a calorimeter radiator reduces the weight of the material to be transported to the Moon and minimises environmental impact. Plastic scintillator bars inserted into the regolith about 1.5 m are the active elements of this instrument: at the surface, each bar is terminated by a plastic scintillator plate to veto high energy charge particles. The readout system for the scintillator bars and plates are based on recently developed single photon solid state detectors (Silicon Photomultiplier, SiPM), extremely compact, sturdy and sensitive devices suited for detecting small light pulses in a space experiment. The performance of a regolith-scintillator calorimeter is evaluated and the relevant parameters are optimised using a GEANT4 simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achenbach, P. et al.: In-beam tests of scintillating fibre detectors at MAMI and at GSI. arXiv:0802.2830v1 [nucl-ex], 20 Feb (2008)

  • Agostinelli, S., et al.: GEANT4—a simulation toolkit. Nucl. Inst. Methods Phys. Res. A 506, 250 (2003)

    Article  ADS  Google Scholar 

  • Aharonian, F.A., et al. (H.E.S.S. Collaboration): Energy dependent gamma-ray morphology in the pulsar wind nebula HESS J1825-137. Astron. Astrophys. 460, 365 (2006)

    Article  ADS  Google Scholar 

  • Aharonian, F.A., et al. (H.E.S.S. Collaboration): Detection of extended very-high-energy gamma-ray emission towards the young stellar cluster Westerlund 2. Astron. Astrophys. 467, 1075 (2007)

    Article  ADS  Google Scholar 

  • Aharonian, F.A., et al. (H.E.S.S. Collaboration): Discovery of very high gamma-ray emission coincident with molecular clouds in the W 28 (G6.4-0.1) field. Astron. Astrophys. 481, 401 (2008a)

    Article  ADS  Google Scholar 

  • Aharonian, F.A., et al. (H.E.S.S. Collaboration): Upper limits from HESS active galactic nuclei observations in 2005–2007. Astron. Astrophys. 478, 387 (2008b)

    Article  ADS  Google Scholar 

  • Aharonian, F.A., et al. (H.E.S.S. Collaboration): HESS very-high-energy gamma-ray sources without identified counterpart. Astron. Astrophys. 477, 353 (2008c)

    Article  ADS  Google Scholar 

  • Beilick, M.: HESS observations of extragalactic objects. Astrophys. Space Sci. 309, 139 (2007)

    Article  ADS  Google Scholar 

  • Bertone, G., Hooper, D., Silk, J.: Particle dark matter: evidence, candidates and constraints. Phys. Rep. 405, 279 (2005)

    Article  ADS  Google Scholar 

  • Champbell, B.A.: Comment on “Regolith layer thickness mapping of the Moon by radar and optical data. Icarus 158, 560 (2002)

    Article  ADS  Google Scholar 

  • De Salvo, R.: Fiber/scintillating fiber (“Spaghetti”) calorimetry. Nucl. Phys. B 44, 122 (1995) (Proc. Suppl.)

    Google Scholar 

  • Dinu, N., Battiston, R., Boscardin, M., et al.: Development of the first prototypes of silicon photomultiplier (SiPM) at ITC-irst. Nucl. Instrum. Methods Phys. Res. A 572, 422 (2007)

    Article  ADS  Google Scholar 

  • Dubus, G.: High energy gamma-ray emission from binaries. New Astron. Rev. 51, 778 (2008)

    Article  ADS  Google Scholar 

  • Fan, Y.-Z., Piran, T.: High energy gamma-ray emission from gamma-ray bursts—before GLAST. arXiv:0805.2221v3, 4 Jun (2008)

  • Foing, B.H.: The Moon as a platform for astronomy and space science. Adv. Space Res. 18(11), 17 (1996)

    Article  ADS  Google Scholar 

  • Funk, S.: Status of identification of VHE gamma-ray sources. Astrophys. Space Sci. 309, 11 (2007)

    Article  ADS  Google Scholar 

  • Funk, S.: VHE Gamma-ray supernova remnants. Adv. Space Res. 41, 464 (2008)

    Article  ADS  Google Scholar 

  • Gavler, S.B., Carlson, P., Conrad, J.: Fluctuation studies and energy reconstruction in a segmented calorimeter. In: IEEE Nuclear Science Symposium Conference Record, N10-5, p. 177 (2006)

  • Greiner, I.: The galactic Gamma-Ray Club. In: 30th ICRC (2007)

  • Griffin, M.D.: The text of Griffin’s remarks on 1 November 2005 can be found at http://www.nasa.gov/pdf/137173main_mg_csis.pdf

  • Heiken, G.H., Vaniman, D.T., French, B.M.: Lunar Source Book, a User’s Guide to the Moon. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  • Hinton, J., Egberts, K., for the HESS Collaboration: High energy stereoscopic system: Latest results. Adv. Space Res. 41, 477 (2008)

    Article  ADS  Google Scholar 

  • King, E.A.: The lunar regolith: physical characteristics and dynamics. Philos. Trans. R. Soc. Lond. A 285, 273 (1977)

    Article  ADS  Google Scholar 

  • Kobayashi, T., Komori, Y., Yoshida, K., Nishimura, J.: The most likely sources of high-energy cosmic-ray electrons in supernova remnants. Astrophys. J. 601, 340 (2004)

    Article  ADS  Google Scholar 

  • Komle, N.I., Kaufmann, E., Kargl, G., Gao, Y., Rui, X.: Development of thermal sensors and drilling systems for lunar and planetary regoliths. Adv. Space Res. 42, 363 (2008)

    Article  ADS  Google Scholar 

  • Kuhlen, M., Diemand, J., Madau, P.: The dark matter annihilation signal from galactic substructure: predictions for GLAST. arXiv:0805.4416v1, 29 May (2008)

  • Moiseev, A.A.: Gamma-ray Large Area Space Telescope: Mission overview. Nuc. Instrum. Methods Phys. Res. A 588, 41 (2008)

    Article  ADS  Google Scholar 

  • Pavlidou, V., Siegal-Gaskins, J.M., Fields, B.D., Olinto, A.V., Brown, C.: Unresolved unidentified source contribution to the Gamma-ray background. Astrophys. J. 667, 27 (2008)

    Article  ADS  Google Scholar 

  • Perrin, D., Sonderegger, P.: Electromagnetic calorimeter with scintillating optical fibers. CERN-OM-SPS/81-7 (1981)

  • Shkuratov, Y.G., Bondarnko, N.V.: Regolith layer thickness mapping of the Moon by radar and optical data. Icarus 149, 329 (2001)

    Article  ADS  Google Scholar 

  • Shkuratov, Y.G., Bondarnko, N.V.: Reply to the comment. Icarus 158, 562 (2002)

    Article  ADS  Google Scholar 

  • Spudis, P.D.: The case for renewed human exploration of the Moon. Earth Moon, Planets 87, 159 (2001)

    Article  ADS  Google Scholar 

  • Strong, A.W.: Source population synthesis and the Galactic diffuse gamma-ray emission. Astrophys. Space Sci. 309, 35 (2007)

    Article  ADS  Google Scholar 

  • Tajima, H.: GLAST tracker. Nucl. Instrum. Methods Phys. Res. A 569, 140 (2006)

    Article  ADS  Google Scholar 

  • Wigmans, R., Zeyrek, M.T.: On the differences between calorimetric detection of electrons and photons. Nucl. Instrum. Methods Phys. Res. A 435, 385 (2002)

    Article  ADS  Google Scholar 

  • Wilkinson, A., DeGennaro, A.: Digging and pushing lunar regolith: Classical soil mechanics and the forces needed for excavation and traction. J. Terramechs. 44, 133 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiano Fidani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Battiston, R., Brunetti, M.T., Cervelli, F. et al. A Moon-borne electromagnetic calorimeter. Astrophys Space Sci 323, 357–366 (2009). https://doi.org/10.1007/s10509-009-0079-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10509-009-0079-6

Keywords

Navigation