Astrophysics and Space Science

, Volume 323, Issue 2, pp 197–203 | Cite as

LRS Bianchi-V cosmology with decaying vacuum density and heat flow

  • C. P. Singh
Original Article


In this paper we consider a locally-rotationally-symmetric (LRS) Bianchi type-V perfect fluid model with variable cosmological ‘constant’ representing the energy density of vacuum. The field equations are solved with and without heat conduction by using a variation law for the mean Hubble parameter, which is related to the average scale factor of the metric and yields a constant value of the deceleration parameter. A constant value of deceleration parameter generates power-law form of average scale factor which is used to find the exact solutions with and without heat conduction with decaying vacuum density. The solutions presented here satisfy all the necessary conditions for the physically acceptability. The thermodynamical relations in decaying vacuum fluid model are also studied in detail.


Cosmology Exact solutions Hubble parameter Cosmological constant Deceleration parameter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banerjee, A., Sanyal, A.K.: Gen. Relativ. Gravit. 20, 103 (1988) CrossRefADSMathSciNetGoogle Scholar
  2. Beesham, A.: Phys. Rev. D 48, 3539 (1993) CrossRefADSGoogle Scholar
  3. Berman, M.S.: Nuovo Cimento B 74, 182 (1983) CrossRefADSGoogle Scholar
  4. Berman, M.S.: Int. J. Theor. Phys. 29, 567 (1990) zbMATHCrossRefGoogle Scholar
  5. Berman, M.S.: Phys. Rev. D 43, 1075 (1991) CrossRefADSGoogle Scholar
  6. Berman, M.S., Gomide, F.M.: Gen. Relativ. Gravit. 20, 191 (1988) CrossRefADSMathSciNetGoogle Scholar
  7. Berman, M.S., Som, M.M., Gomide, F.M.: Gen. Relativ. Gravit. 21, 287 (1989) CrossRefADSMathSciNetGoogle Scholar
  8. Chen, W., Wu, Y.K.: Phys. Rev. D 41, 695 (1990) CrossRefADSGoogle Scholar
  9. Coley, A.A.: Gen. Relativ. Gravit. 22, 3 (1990a) zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. Coley, A.A.: J. Math. Phys. 31, 1698 (1990b) zbMATHCrossRefADSMathSciNetGoogle Scholar
  11. Coley, A.A., Tupper, B.O.J.: Phys. Lett. A 95, 357 (1983) CrossRefADSMathSciNetGoogle Scholar
  12. Coley, A.A., Tupper, B.O.J.: Astrophys. J. 280, 26 (1984) CrossRefADSMathSciNetGoogle Scholar
  13. Eckart, C.: Phys. Rev. 58, 919 (1940) zbMATHCrossRefADSGoogle Scholar
  14. Hubble, E.P.: Proc. Natl. Acad. Sci. 15, 168 (1927) CrossRefADSGoogle Scholar
  15. Padamanabhan, T.: arXiv:hep-th/0212290v2 (2002)
  16. Perlmutter, S., et al.: Nature 391, 51 (1998) CrossRefADSGoogle Scholar
  17. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999) CrossRefADSGoogle Scholar
  18. Raychaudhari, A.K.: Theoretical Cosmology. Clarendon Press, Oxford (1979) Google Scholar
  19. Riess, A.G., et al.: Astrophys. J. 116, 1009 (1998) Google Scholar
  20. Roy, S.R., Banerjee, S.K.: Gen. Relativ. Gravit. 28, 27 (1996) zbMATHCrossRefADSMathSciNetGoogle Scholar
  21. Singh, C.P.: Pramana J. Phys. 72, 429 (2009a) CrossRefADSGoogle Scholar
  22. Singh, C.P.: Gravit. Cosmology (2009b, in press) Google Scholar
  23. Vishwakarma, R.G., Abdussattar, Beesham, A.: Phys. Rev. D 60, 063507 (1999) CrossRefADSMathSciNetGoogle Scholar
  24. Weinberg, S.: Rev. Mod. Phys. 61, 1 (1989) zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Applied MathematicsDelhi College of EngineeringDelhiIndia

Personalised recommendations