Advertisement

High energy density physics generated by intense heavy ion beams

  • D. H. H. HoffmannEmail author
  • V. E. Fortov
  • M. Kuster
  • V. Mintsev
  • B. Y. Sharkov
  • N. A. Tahir
  • S. Udrea
  • D. Varentsov
  • K. Weyrich
Original Article

Abstract

Intense ion beams from accelerators are now available to generate high energy density matter and to study astrophysical phenomena in the laboratory under controlled and reproducible conditions. A detailed understanding of interaction phenomena of intense ion- and laser radiation with matter is important for a large number of applications in different fields of science, extending from basic research of plasma properties to application in energy science and the investigation of processes occurring in stellar atmospheres or even in the interior of stars and planets. Energy loss processes of heavy ions in plasma and cold matter are important for the generation of high energy density states in general and especially in the hot dense plasma of an inertial fusion target. Of special interest are phase transitions and the associated time scales when matter passes the warm dense matter regime of the phase diagram at high density but relatively low temperature. We present an overview on recent results and developments of beam plasma, and beam matter interaction processes studied with heavy ion beams and laser beams combined with accelerator and nuclear physics technology. A natural example of hot dense plasma is provided by our neighbouring star the sun, and allows a deep insight into the physics of fusion, the properties of matter at high energy density, and is moreover an excellent laboratory for astroparticle physics. As such the sun’s interior plasma can even be used to probe the existence of novel particles and dark matter candidates with a combination of equipment and methods from accelerator technology and high resolution plasma spectroscopy.

Keywords

High energy density physics Dense plasma Energy loss Inertial fusion Warm dense matter Interior of planets and stars 

References

  1. Bennett, F.D.: Physics of High Energy Density. Academic Press, New York and London (1971) Google Scholar
  2. Boggasch, E., : Appl. Phys. Lett. 60, 2475 (1992a) CrossRefADSGoogle Scholar
  3. Boggasch, E., : Appl. Phys. Lett. 60, 2475 (1992b) CrossRefADSGoogle Scholar
  4. Bushman, A.V., Fortov, V.E.: Usp. Fiz. Nauk 140, 177 (1983a) Google Scholar
  5. Bushman, A.V., Fortov, V.E.: Usp. Fiz. Nauk 140, 177 (1983b) Google Scholar
  6. Constantin, C., : Laser Part. Beams 22, 59 (2004) CrossRefADSGoogle Scholar
  7. Deutsch, C.: Ann. De Phys. 11, 1 (1986) CrossRefADSGoogle Scholar
  8. Deutsch, C., : Nucl. Instr. Methods Phys. Res. Sect. a-Accel. Spectrom. Detect. Assoc. Equip. 278, 38 (1989) CrossRefADSGoogle Scholar
  9. Dewald, E., : Laser Part. Beams 20, 399 (2002) CrossRefADSGoogle Scholar
  10. Dietrich, K.G., : Phys. Rev. Lett. 69, 3623 (1992) CrossRefADSGoogle Scholar
  11. Fortov, V., Lebedev, M., Ternovoi, V.: Rev. Gen. De Therm. 31, 589 (1992) Google Scholar
  12. Fortov, V.E., et al.: Phys. Rev. Lett. 99 (2007) Google Scholar
  13. Funk, U.N., : Nucl. Instr. Methods Phys. Res. Sect. a-Accel. Spectrom. Detect. Assoc. Equip. 415, 68 (1998) CrossRefGoogle Scholar
  14. Funk, U.N., : J. De Phys. IV 10, 215 (2000) Google Scholar
  15. Gardes, D., : Radiat. Eff. Defects Solids 110, 49 (1989) CrossRefGoogle Scholar
  16. Godwal, B.K., Rao, R.S., Verma, A.K., Shukla, M., Pant, H.C., Sikka, S.K.: Laser Part. Beams 21, 523 (2003) CrossRefADSGoogle Scholar
  17. Henning, W.F.: J. Phys. G-Nucl. Part. Phys. 34, S551 (2007) CrossRefADSGoogle Scholar
  18. Hoffmann, D.H.H., Weyrich, K., Wahl, H., Gardes, D., Bimbot, R., Fleurier, C.: Phys. Rev. A 42, 2313 (1990) CrossRefADSGoogle Scholar
  19. Hoffmann, D.H.H., : Nucl. Instr. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 90, 1 (1994) ADSGoogle Scholar
  20. Hoffmann, D.H.H., : Nucl. Instr. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 161, 9 (2000) ADSGoogle Scholar
  21. Hoffmann, D.H.H., : Laser Part. Beams 23, 47 (2005a) ADSGoogle Scholar
  22. Hoffmann, D.H.H., : Laser Part. Beams 23, 47 (2005b) ADSGoogle Scholar
  23. Hoffmann, D.H.H., : Eur. Phys. J. D 44, 293 (2007) ADSGoogle Scholar
  24. Hora, H.: Laser Part. Beams 25, 37 (2007) CrossRefADSGoogle Scholar
  25. Jacoby, J., : Phys. Rev. Lett. 74, 1550 (1995) CrossRefADSGoogle Scholar
  26. Logan, B.G., : Nucl. Instr. Methods Phys. Res. Sect. a-Accel. Spectrom. Detect. Assoc. Equip. 577, 1 (2007a) CrossRefADSGoogle Scholar
  27. Logan, B.G., : Nucl. Instr. Methods Phys. Res. Sect. a-Accel. Spectrom. Detect. Assoc. Equip. 577, 1 (2007b) CrossRefADSGoogle Scholar
  28. Lomonosov, I.V.: Laser Part. Beams 25, 567 (2007) CrossRefGoogle Scholar
  29. Meyertervehn, J., : Phys. Fluids B-Plasma Phys. 2, 1313 (1990) CrossRefGoogle Scholar
  30. Neumayer, P., : Laser Part. Beams 23, 385 (2005) CrossRefADSGoogle Scholar
  31. Neuner, U., : Phys. Rev. Lett. 85, 4518 (2000a) CrossRefADSGoogle Scholar
  32. Neuner, U., : Phys. Rev. Lett. 85, 4518 (2000b) CrossRefADSGoogle Scholar
  33. Ni, P., : J. De Phys. IV 133, 977 (2006) ADSGoogle Scholar
  34. Novikov, N.N.: Zh. Prikl. Mekh. Tekh. Fiz. 3, 8 (1962) Google Scholar
  35. Peccei, R.D., Quinn, H.R.: Phys. Rev. Lett. 38, 1440 (1977a) CrossRefADSGoogle Scholar
  36. Peccei, R.D., Quinn, H.R.: Phys. Rev. Lett. 38, 1440 (1977b) CrossRefADSGoogle Scholar
  37. Piriz, A.R., Temporal, M., Cela, J.J.L., Tahir, N.A., Hoffmann, D.H.H.: Plasma Phys. Controll. Fusion 45, 1733 (2003) CrossRefADSGoogle Scholar
  38. Ray, A., Srivastava, M.K., Kondayya, G., Menon, S.V.G.: Laser Part. Beams 24, 437 (2006) CrossRefGoogle Scholar
  39. Rosmej, O.N., : Laser Part. Beams 23, 79 (2005) ADSGoogle Scholar
  40. Schaumann, G., : Laser Part. Beams 23, 503 (2005) CrossRefADSGoogle Scholar
  41. Sharkov, B.Y.: Nucl. Instr. Methods Phys. Res. Sect. a-Accel. Spectrom. Detect. Assoc. Equip. 577, 14 (2007) CrossRefADSGoogle Scholar
  42. Tahir, N.A., : Phys. Rev. E 62, 1224 (2000) CrossRefADSGoogle Scholar
  43. Tahir, N.A., et al.: Phys. Rev. E 6302 (2001a) Google Scholar
  44. Tahir, N.A., Kozyreva, A., Spiller, P., Hoffmann, D.H.H., Shutov, A.: Phys. Rev. E 6303, 036407 (2001b) ADSGoogle Scholar
  45. Tahir, N.A., : Laser Part. Beams 22, 485 (2004) CrossRefADSGoogle Scholar
  46. Tahir, N.A., : Phys. Rev. Lett. 95, 035001 (2005a) CrossRefADSGoogle Scholar
  47. Tahir, N.A., : Phys. Rev. Lett. 94, 135004 (2005b) CrossRefADSGoogle Scholar
  48. Tahir, N.A., : Contrib. Plasma Phys. 47, 223 (2007a) CrossRefADSGoogle Scholar
  49. Tahir, N.A., : Laser Part. Beams 25, 639 (2007b) Google Scholar
  50. Tahir, N.A., : Nucl. Instr. Methods Phys. Res. Sect. a-Accel. Spectrom. Detect. Assoc. Equip. 577, 238 (2007c) CrossRefADSGoogle Scholar
  51. Temporal, M., Piriz, A.R., Grandjouan, N., Tahir, N.A., Hoffmann, D.H.H.: Laser Part. Beams 21, 609 (2003) CrossRefADSGoogle Scholar
  52. Temporal, M., Lopez-Cela, J.J., Piriz, A.R., Grandjouan, N., Tahir, N.A., Hoffmann, D.H.H.: Laser Part. Beams 23, 137 (2005a) CrossRefADSGoogle Scholar
  53. Temporal, M., Lopez-Cela, J.J., Piriz, A.R., Grandjouan, N., Tahir, N.A., Hoffmann, D.H.H.: Laser Part. Beams 23, 137 (2005b) CrossRefADSGoogle Scholar
  54. Ulrich, A., : J. Appl. Phys. 62, 357 (1987) CrossRefADSGoogle Scholar
  55. Varentsov, D., : Nucl. Instr. Methods Phys. Res. Sect. a-Accel. Spectrom. Detect. Assoc. Equip. 577, 262 (2007a) CrossRefADSGoogle Scholar
  56. Varentsov, D., : Nucl. Instr. Methods Phys. Res. Sect. a-Accel. Spectrom. Detect. Assoc. Equip. 577, 262 (2007b) CrossRefADSGoogle Scholar
  57. Weinberg, S.: Phys. Rev. Lett. 40, 223 (1978) CrossRefADSGoogle Scholar
  58. Weyrich, K., : Nucl. Instr. Methods Phys. Res. Sect. a-Accel. Spectrom. Detect. Assoc. Equip. 278, 52 (1989) CrossRefADSGoogle Scholar
  59. Weyrich, K., : J. Phys. a-Math. Gen. 39, 4749 (2006) CrossRefADSGoogle Scholar
  60. Ziegler, J.F.: Nucl. Instr. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 219–20, 1027 (2004) Google Scholar
  61. Ziegler, J.F.: www.srim.org (2006)
  62. Zioutas, K., : Phys. Rev. Lett. 94, 121301 (2005) CrossRefADSGoogle Scholar
  63. Zioutas, K., Hoffmann, D.H.H., Dennerl, K., Papaevangelou, T.: Science 306, 1485 (2004) CrossRefGoogle Scholar
  64. Zou, X.B., Liu, R., Zeng, N.G., Han, M., Yuan, J.Q., Wang, X.X., Zhang, G.X.: Laser Part. Beams 24, 503 (2006) CrossRefGoogle Scholar
  65. Zvorykin, V.D., : Laser Part. Beams 25, 435 (2007) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • D. H. H. Hoffmann
    • 1
    Email author
  • V. E. Fortov
    • 2
  • M. Kuster
    • 1
  • V. Mintsev
    • 3
  • B. Y. Sharkov
    • 4
  • N. A. Tahir
    • 5
  • S. Udrea
    • 1
  • D. Varentsov
    • 5
  • K. Weyrich
    • 5
  1. 1.Technische Universität DarmstadtInstitut für KernphysikDarmstadtGermany
  2. 2.Institute of Thermophysics of Extreme States, Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussian Federation
  3. 3.Institute of Problems of Chemical PhysicsChernogolovkaRussian Federation
  4. 4.A.I. Alikhanov Institute of Theoretical and Experimental PhysicsMoscowRussian Federation
  5. 5.Gesellschaft für Schwerionenforschung, GSI-DarmstadtDarmstadtGermany

Personalised recommendations