Advertisement

Astrophysics and Space Science

, Volume 322, Issue 1–4, pp 49–55 | Cite as

Image processing of radiographs in 3D Rayleigh-Taylor decelerating interface experiments

  • C. C. KuranzEmail author
  • R. P. Drake
  • M. J. Grosskopf
  • H. F. Robey
  • B. A. Remington
  • J. F. Hansen
  • B. E. Blue
  • J. Knauer
Original Article

Abstract

This paper discusses high-energy-density laboratory astrophysics experiments exploring the Rayleigh-Taylor instability under conditions similar to the blast wave driven, outermost layer in a core-collapse supernova. The planar blast wave is created in an experimental target using the Omega laser. The blast wave crosses an unstable interface with a seed perturbation machined onto it. The perturbation consists of a 3D “egg crate” pattern and, in some cases, an additional longer wavelength mode is added to this 3D, single-mode pattern. The main diagnostic of this experiment is x-ray radiography. This paper explores an image processing technique to improve the identification and characterization of structure in the radiographic data.

Keywords

Supernovae Hydrodynamic instabilities Laboratory astrophysics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnett, W.D.: Supernova and Nucleosynthesis. Princeton University Press, Princeton (1996) Google Scholar
  2. Boehly, T.R., : Rev. Sci. Instrum. 66, 508 (1995) CrossRefADSGoogle Scholar
  3. Drake, R.P., : Phys. Plasmas 11, 2829 (2004) CrossRefADSMathSciNetGoogle Scholar
  4. Hansen, J.F., Robey, H.F., Klein, R.I., Miles, A.R.: Astrophys. J. 662, 379 (2007) CrossRefADSGoogle Scholar
  5. Kane, J., : Astrophys. J. 478, L75 (1997) CrossRefADSGoogle Scholar
  6. Kuranz, C.C., : Astrophys. Space Sci. 298, 9 (2005) zbMATHCrossRefADSGoogle Scholar
  7. Kuranz, C.C., : Rev. Sci. Instrum. 77, 10E327 1 (2006) CrossRefGoogle Scholar
  8. Kuranz, C.C., : Astrophys. Space Sci. 307, 115 (2007) CrossRefADSGoogle Scholar
  9. Larsen, J.T., Lane, S.M.: J. Quant. Spectrosc. Radiat. Transfer 51, 179 (1994) CrossRefADSGoogle Scholar
  10. Meshkov, E., et al.: In: 6th International Workshop on the Physics of Compressible Turbulent Mixing, Marseille, France (1997) Google Scholar
  11. Muller, E., Fryxell, B., Arnett, D.: Annu. Rev. Astron. Astrophys. 251, 505 (1991) ADSGoogle Scholar
  12. Rayleigh, L.: Scientific Papers II. Cambridge University Press, Cambridge (1900) zbMATHGoogle Scholar
  13. Remington, B.A., Drake, R.P., Ryutov, D.D.: Rev. Mod. Phys. 78, 755 (2006) CrossRefADSGoogle Scholar
  14. Richtmyer, D.H.: Commun. Pure Appl. Math. 13, 297 (1960) CrossRefMathSciNetGoogle Scholar
  15. Robey, H.F., : Phys. Plasmas 8, 2446 (2001) CrossRefADSGoogle Scholar
  16. Robey, H.F., Zhou, Y., Buckingham, A.C., Keiter, P., Remington, B.A., Drake, R.P.: Phys. Plasmas 10, 614 (2003) CrossRefADSGoogle Scholar
  17. Ryutov, D.D., Drake, R.P., Kane, J., Liang, E., Remington, B.A., Wood-Vasey, M.: Astrophys. J. 518, 821 (1999) CrossRefADSGoogle Scholar
  18. Taylor, S.G.: Proc. R. Soc. A 201, 192 (1950) zbMATHCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • C. C. Kuranz
    • 1
    Email author
  • R. P. Drake
    • 1
  • M. J. Grosskopf
    • 1
  • H. F. Robey
    • 2
  • B. A. Remington
    • 2
  • J. F. Hansen
    • 2
  • B. E. Blue
    • 3
  • J. Knauer
    • 4
  1. 1.University of MichiganAnn ArborUSA
  2. 2.Lawrence Livermore National LaboratoryLivermoreUSA
  3. 3.General AtomicsSan DiegoUSA
  4. 4.University of RochesterRochesterUSA

Personalised recommendations