Advertisement

Astrophysics and Space Science

, Volume 317, Issue 1–2, pp 45–58 | Cite as

The cosmic age crisis and the Hubble constant in a non-expanding universe

  • Wilfred H. SorrellEmail author
Original Article

Abstract

The present paper outlines a cosmological paradigm based upon Dirac’s large number hypothesis and continual creation of matter in a closed static (nonexpanding) universe. The cosmological redshift is caused by the tired-light phenomenon originally proposed by Zwicky. It is shown that the tired-light cosmology together with continual matter creation has a universal Hubble constant H 0=(512π 2/3)1/6(GC 0)1/3 fixed by the universal rate C 0 of matter creation, where G is Newton’s gravitational constant. It is also shown that a closed static universe has a finite age τ 0=(243π 5/8GC 0)1/3 also fixed by the universal rate of matter creation. The invariant relationship H 0 τ 0=3π 261/2 shows that a closed static universe is much older (≈one trillion years) than any expanding universe model based upon Big-Bang cosmology. It is this property of a static universe that resolves any cosmic age crisis provided that galaxy formation in the universe is a continual recurring process. Application of Dirac’s large number hypothesis gives a matter creation rate C 0=4.6×10−48 gm cm−3 s−1 depending only on the fundamental constants of nature. Hence, the model shows that a closed static universe has a Hubble constant H 0=70 km s−1 Mpc−1 in good agreement with recent astronomical determinations of H 0. By using the above numerical value for H 0 together with observational data for elongated cellular-wall structures containing superclusters of galaxies, it is shown that the elongated cellular-wall configurations observed in the real universe are at least one hundred billion years old.

Application of the microscopic laws of physics to the large-scale macroscopic universe leads to a static eternal cosmos endowed with a matter-antimatter symmetry. It is proposed that the matter-antimatter asymmetry is continuously created by particle-antiparticle pair annihilation occurring in episodic cosmological gamma-ray bursts observed in the real universe.

Keywords

Cosmology Closed static universe Large-scale structure of the universe Matter-antimatter asymmetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abell, G.: Astrophys. J. Suppl. Ser. 3, 211 (1958) CrossRefADSGoogle Scholar
  2. Abell, G., Corwin, II., Olowin, R.: Astrophys. J. Suppl. Ser. 70, 1 (1989) CrossRefADSGoogle Scholar
  3. Aguirre, A.: Astrophys. J. 525, 583 (1999) CrossRefADSGoogle Scholar
  4. Allen, S.W., Schmidt, R.W., Bridle, S.L.: Mon. Not. R. Astron. Soc. 346, 593 (2003) CrossRefADSGoogle Scholar
  5. Alfvén, H.: Rev. Mod. Phys. 37, 652 (1965) CrossRefADSGoogle Scholar
  6. Alfvén, H.: Astrophys. Space Sci. 64, 401 (1979) CrossRefADSGoogle Scholar
  7. Alfvén, H.: Astrophys. Space Sci. 89, 313 (1983) CrossRefADSGoogle Scholar
  8. Alfvén, H., Klein, O.: Ark. Fys. 23, 187 (1962) Google Scholar
  9. Bahcall, N.A.: In: Audouze, J., et al. (eds.) Large Scale Structures of the Universe. IAU Symp., vol. 130, p. 229 (1988) Google Scholar
  10. Banerjee, S.K., et al.: Astron. J. 119, 2583 (2000) CrossRefADSGoogle Scholar
  11. Bondi, H., Gold, T.: Mon. Not. R. Astron. Soc. 108, 252 (1948) ADSzbMATHGoogle Scholar
  12. Buonanno, R., et al.: Astron. J. 105, 184 (1993) CrossRefADSGoogle Scholar
  13. Clube, S.V.M.: Mon. Not. R. Astron. Soc. 193, 385 (1980) ADSGoogle Scholar
  14. Crawford, D.F.: Aust. J. Phys. 40, 449 (1987a) ADSGoogle Scholar
  15. Crawford, D.F.: Aust. J. Phys. 40, 459 (1987b) ADSGoogle Scholar
  16. Crawford, D.F.: Astrophys. J. 377, 1 (1991) CrossRefADSGoogle Scholar
  17. Crawford, D.F.: Astrophys. J. 410, 488 (1993) CrossRefADSGoogle Scholar
  18. de Bernardis, P., et al.: Nature 404, 955 (2000) CrossRefADSGoogle Scholar
  19. Dirac, P.A.M.: Proc. R. Soc. A 165, 199 (1938) CrossRefADSGoogle Scholar
  20. Freedman, W.L., et al.: Astrophys. J. 553, 47 (2001) CrossRefADSGoogle Scholar
  21. Guth, A.H.: Phys. Rev. D 23, 347 (1981) CrossRefADSGoogle Scholar
  22. Hoyle, F.: Astrophys. Space Sci. 198, 195 (1992) CrossRefADSGoogle Scholar
  23. Hoyle, F., Burbidge, G., Narlikar, J.V.: Mon. Not. R. Astron. Soc. 286, 173 (1997) ADSGoogle Scholar
  24. Krauss, L.M.: Sci. Am. 280, 52 (1999) CrossRefGoogle Scholar
  25. Krauss, L.M., Chaboyer, B.: Science 229, 65 (2003) CrossRefADSGoogle Scholar
  26. Kirshner, R.P., Oemler, A., Jr., Schechter, P.L., Shectman, S.A.: Astrophys. J. 248, L57 (1981) CrossRefADSGoogle Scholar
  27. Kolokotronis, V., Basilakos, S., Plionis, M.: Mon. Not. R. Astron. Soc. 331, 1020 (2002) CrossRefADSGoogle Scholar
  28. Kundt, W.: Chin. J. Astron. Astrophys. 3, 501 (2003) ADSCrossRefGoogle Scholar
  29. Lehnert, B.: Astrophys. Space Sci. 140, 77 (1988) CrossRefADSGoogle Scholar
  30. Lerner, E.J.: Astrophys. J. 361, 63 (1990) CrossRefADSGoogle Scholar
  31. Lerner, E.J.: The Big Bang Never Happened. Random House, New York (1991). Chap. 1, 11 Google Scholar
  32. Lerner, E.J.: Sky Telesc. 83, 124 (1992) ADSGoogle Scholar
  33. Lerner, E.J.: Astrophys. Space Sci. 207, 17 (1993) CrossRefADSGoogle Scholar
  34. Müller, J., Schneider, M., Soffel, M., Ruder, H.: Astrophys. J. 382, L101 (1991) CrossRefADSGoogle Scholar
  35. Renner, B.: Mon. Not. R. Astron. Soc. 133, 197 (1966) ADSGoogle Scholar
  36. Peratt, A.L.: Sky Telesc. 83, 136 (1992) ADSGoogle Scholar
  37. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999) CrossRefADSGoogle Scholar
  38. Riess, A., et al.: Astron. J. 116, 565 (1998) CrossRefGoogle Scholar
  39. Rogers, S., Thompson, W.B.: Astrophys. Space Sci. 71, 257 (1980) CrossRefADSGoogle Scholar
  40. Sakharov, A.D.: JETP Lett. 5, 24 (1967) ADSGoogle Scholar
  41. Sandage, A.: Astron. J. 106, 719 (1993) CrossRefADSGoogle Scholar
  42. Schaefer, B.E., Cline, T.L., Hurley, K.C., Laros, J.G.: Astrophys. J. 489, 693 (1997) CrossRefADSGoogle Scholar
  43. Schechter, P.L.: Astrophys. J. 203, 297 (1976) CrossRefADSGoogle Scholar
  44. Schmidt, R.W., Allen, S.W., Fabian, A.C.: Mon. Not. R. Astron. Soc. 352, 1413 (2004) CrossRefADSGoogle Scholar
  45. Simcoe, R.A., Sargent, W.L.W., Rauch, M., Becker, G.: Astrophys. J. 637, 648 (2006) CrossRefADSGoogle Scholar
  46. Slinglend, K., et al.: Bull. Am. Astron. Soc. 28, 1289 (1996) ADSGoogle Scholar
  47. Songaila, A., Cowie, L.L.: In: Harwit, M., Hauser, M.G. (eds.) The Extragalactic Infrared Background and its Cosmological Implications. IAU Symp., vol. 204, p. 323 (2001) Google Scholar
  48. Sorrell, W.H.: In: Shapiro, M.M. (ed.) Cosmic Radiation in Contemporary Astrophysics. NATO ASI Series, vol. 162, p. 67 (1986) Google Scholar
  49. Sunyaev, R.A., Zel’dovich, Ya.B.: Comments Astrophys. Space Phys. 4, 173 (1972) ADSGoogle Scholar
  50. Tully, R.B.: Astrophys. J. 303, 25 (1986) CrossRefADSGoogle Scholar
  51. Wickramasinghe, N.C., et al.: Astrophys. Space Sci. 35, L9 (1975) CrossRefADSGoogle Scholar
  52. Wilczek, F.: Sci. Am. 243, 82 (1980) ADSCrossRefGoogle Scholar
  53. Zwicky, F.: Proc. Nat. Acad. Sci. 15, 773 (1929) CrossRefADSzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of Missouri–St. LouisSt. LouisUSA

Personalised recommendations