Advertisement

Effects of two-temperature electrons, external oblique magnetic field, and higher-order nonlinearity on dust acoustic solitary waves in a dusty plasma with vortex-like ion distribution

  • S. K. El-Labany
  • E. F. El-ShamyEmail author
  • S. A. El-Warraki
Original Article

Abstract

Nonlinear properties of the dust acoustic (DA) solitary waves in a dusty plasma consisting of negatively variable-charged dust particles, vortex-like distributed ions and two-temperature isothermal electrons are reported. A reductive perturbation theory has been used to derive a modified Korteweg-de Vries (mKdV) equation for the first-order perturbed potential and a linear inhomogeneous mKdV-type equation for the second-order perturbed potential. The renormalization method is used to obtain stationary solutions of these coupled equations. The modifications in the amplitude and width of the solitary wave structure due to the inclusion of two different types of isothermal electrons, external oblique magnetic field, higher-order nonlinearity, and vortex-like distributed ions are investigated. Also a method based on energy consideration was used to obtain the stability condition. Moreover, the numerical results are applied to investigate some nonlinear characteristics of the DA solitary waves.

Keywords

Effects of two-temperature electrons Vortex-like ion distribution External oblique magnetic field Higher-order nonlinearity Dust acoustic solitary waves Dusty plasmas 

References

  1. Bouchoule, A.: Dusty Plasma Physics, Chemistry, and Technological Impacts in Plasma Processing. Wiley, New York (1999) Google Scholar
  2. El-Labany, S.K.: Contribution of higher-order nonlinearity to nonlinear ion-acoustic waves in a weakly relativistic warm plasma. Part 1. Isothermal case. J. Plasma Phys. 50, 495 (1993) CrossRefADSGoogle Scholar
  3. El-Labany, S.K., Moslem, W.M.: Higher order contribution to dust-acoustic waves in magnetized dusty plasmas. Phys. Scr. 65, 416 (2002) zbMATHCrossRefADSGoogle Scholar
  4. El-Labany, S.K., Diab, A.M., El-Shamy, E.F.: Critical density solitary waves structure in a hot dusty plasma with vortex-like ion distribution in phase space. Astrophys. Space Sci. 282, 595 (2002) CrossRefADSGoogle Scholar
  5. El-Labany, S.K., El-Shamy, E.F.: Critical density solitary waves structure in a hot magnetized dusty plasma with vortex-like ion distribution in phase space. Phys. Plasmas 12, 42301 (2005) CrossRefGoogle Scholar
  6. El-Labany, S.K., Moslem, W.M., Safy, F.M.: Effects of two-temperature ions, magnetic field, and higher-order nonlinearity on the existence and stability of dust-acoustic solitary waves in Saturn’s F ring. Phys. Plasmas 13, 082903 (2006) CrossRefADSGoogle Scholar
  7. El-Labany, S.K., El-Shamy, E.F., El-Taibany, W.F., Moslem, W.M.: Dust-acoustic solitary waves in a two-temperature electrons with charge fluctuations and nonisothermal ions. Chaos Solitons & Fractals 34, 1393 (2007) CrossRefGoogle Scholar
  8. Ghosh, S., Sarkar, S., Khan, M., Gupta, M.R.: Nonlinear properties of small amplitude dust ion acoustic solitary waves. Phys. Plasmas 7, 3594 (2000) CrossRefADSGoogle Scholar
  9. Ghosh, S., Sarkar, S., Khan, M., Gupta, M.R.: Small amplitude nonlinear dust ion acoustic waves in a magnetized dusty plasma with charged fluctuation. Phys. Scr. 63, 395 (2001) zbMATHCrossRefADSGoogle Scholar
  10. Kakati, M., Goswami, K.S.: Solitary wave structures in presence of nonisothermal ions in a dusty plasma. Phys. Plasmas 5, 4508 (1998) CrossRefADSGoogle Scholar
  11. Kodama, Y., Taniuti, T.: Higher order approximation in the reductive perturbation method. I. The weakly dispersive system. J. Phys. Soc. Jpn. 45, 298 (1978) CrossRefADSMathSciNetGoogle Scholar
  12. Lai, C.S.: Effect of higher- order contribution and of ion temperature on ion-acoustic solitary waves. Can. J. Phys. 57, 490 (1979) ADSGoogle Scholar
  13. Mamun, A.A.: Nonlinear propagation of dust-acoustic waves in a magnetized dusty plasma with vortex-like ion distribution. J. Plasma Phys. 59, 575 (1997) CrossRefADSGoogle Scholar
  14. Mamun, A.A., Cairns, R.A., Shukla, P.K.: Effects of vortex-like and non-thermal ion distributions on non-linear dust-acoustic waves. Phys. Plasmas 3, 2610 (1996) CrossRefADSMathSciNetGoogle Scholar
  15. Mendis, D.A.: Progress in the study of dusty plasmas. Plasma Sources Sci. Technol. 11, A219 (2002) CrossRefADSGoogle Scholar
  16. Moslem, W.M., El-Taibany, W.F.: Effect of two-temperature trapped electrons to nonlinear dust-ion-acoustic solitons. Phys. Plasmas 12, 122309 (2005) CrossRefADSGoogle Scholar
  17. Rao, N.N., Shukla, P.K., Yu, M.Y.: Dust-acoustic waves in dusty plasmas. Planet. Space Sci. 38, 543 (1990) CrossRefADSGoogle Scholar
  18. Wen-Shan, D.: Stability of dust acoustic waves in weakly two-dimensional dust plasma with vortex-like ion distribution. Chin. Phys. Lett. 19, 452 (2002) CrossRefADSGoogle Scholar
  19. Xie, B., He, K., Huang, Z.: Effect of adiabatic variation of dust charges on dust-acoustic solitary waves. Phys. Lett. A 247, 403 (1998) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • S. K. El-Labany
    • 1
  • E. F. El-Shamy
    • 1
    Email author
  • S. A. El-Warraki
    • 1
  1. 1.Theoretical Physics Group, Department of Physics, Faculty of ScienceMansoura UniversityDamietta El-GedidaEgypt

Personalised recommendations