Astrophysics and Space Science

, Volume 316, Issue 1–4, pp 129–133 | Cite as

Granada oscillation code (GraCo)

  • A. Moya
  • R. Garrido
Original Article


Granada oscillation code (GraCo) is a software constructed to compute adiabatic and non-adiabatic oscillation eigenfunctions and eigenvalues. The adiabatic version gives the standard numerical resolution, and also the Richardson extrapolation, different sets of eigenfunctions, different outer mechanical boundary conditions or different integration variables. The non-adiabatic version can include the atmosphere-pulsation interaction. The code has been used for intensive studies of δ Scuti, γ Doradus, β Ceph., SdO and, SdB stars. The non adiabatic observables “phase-lag” (the phase between the effective temperature variations and the radial displacement) and \({\delta T_{\mathrm{eff}}\over T_{\mathrm{eff}}}\) (relative surface temperature variation) can help to the modal identification. These quantities together with the energy balance (“growth rate”) provide useful additional information to the adiabatic resolution (eigenfrequencies and eigenfunctions).


Stars Stellar oscillations Numerical resolution 


97.10.Sj 97.10.Cv 97.90.+j 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Claret, A.: Studies on stellar rotation. I. The theoretical apsidal motion for evolved rotating stars. Astron. Astrophys. 350, 56–62 (1999) ADSGoogle Scholar
  2. Dupret, M.-A., De Ridder, J., Neuforge, C., Aerts, C., Scuflaire, R.: Influence of non-adiabatic temperature variations on line profile variations of slowly rotating beta Cep stars and SPBs. I. Non-adiabatic eigenfunctions in the atmosphere of a pulsating star. Astron. Astrophys. 385, 563–571 (2002) CrossRefADSGoogle Scholar
  3. Garrido, R., Garcia-Lobo, E., Rodriguez, E.: Modal discrimination of pulsating stars by using Stromgren photometry. Astron. Astrophys. 234, 262–268 (1990) ADSGoogle Scholar
  4. Lawlor, T.M., MacDonald, J.: The mass of helium in white dwarf stars and the formation and evolution of hydrogen-deficient post-AGB stars. Mon. Not. R. Astron. Soc. 371, 263–282 (2006) CrossRefADSGoogle Scholar
  5. Ledoux, P.: The nonradial oscillations of gaseous stars and the problem of Beta Canis Majoris. Astrophys. J. 114, 373–384 (1951) CrossRefADSGoogle Scholar
  6. Morel, P.: CESAM: A code for stellar evolution calculations. Astron. Astrophys. Suppl. Ser. 124, 597–614 (1997) CrossRefADSGoogle Scholar
  7. Moya, A., Garrido, R., Dupret, M.A.: Non-adiabatic theoretical observables in δ Scuti stars. Astron. Astrophys. 414, 1081–1090 (2004) CrossRefADSGoogle Scholar
  8. Moya, A. et al.: Inter-comparison of the g-, f- and p-modes calculated using different oscillation codes for a given stellar model. Astrophys. Space Sci. (2007), this volume Google Scholar
  9. Shibahashi, H., Osaki, Y.: Theoretical eigenfrequencies of solar oscillations of low harmonic degree L in 5-minute range. Publ. Astron. Soc. Jpn. 33, 713–719 (1981) ADSGoogle Scholar
  10. Unno, W., Osaki, Y., Ando, H., Saio, H., Shibahashi, H.: Nonradial Oscillation of Stars. University of Tokyo Press, Tokyo (1989) Google Scholar
  11. Vorontsov, S.V., Zharkov, V.N., Lubimov, V.M.: The free oscillations of Jupiter and Saturn. Icarus 27, 109–118 (1976) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Instituto de Astrofísica de Andalucía (CSIC)GranadaSpain

Personalised recommendations