Astrophysics and Space Science

, Volume 312, Issue 3–4, pp 275–278 | Cite as

The Pioneer anomaly and a Machian universe

Letter

Abstract

We discuss astronomical and astrophysical evidence, which we relate to the principle of zero-total energy of the Universe, that imply several relations among the mass M, the radius R and the angular momentum L of a “large” sphere representing a Machian Universe. By calculating the angular speed, we find a peculiar centripetal acceleration for the Universe. This is an ubiquituous property that relates one observer to any observable. It turns out that this is exactly the anomalous acceleration observed on the Pioneers spaceships. We have thus shown that this anomaly is to be considered a property of the Machian Universe. We discuss several possible arguments against our proposal.

Keywords

Cosmology Einstein Machian Universe Brans-Dicke Pioneer anomaly Blackett law Wesson’s law 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, R.J., Bazin, M., Schiffer, M.: Introduction to General Relativity, 2nd edn. McGraw-Hill, New York (1975) Google Scholar
  2. Anderson, J.D.: Planet. Rep. 19(3), 15 (1999) Google Scholar
  3. Berman, M.S.: Energy of black-holes and Hawking’s universe. In: Kreitler, P. (ed.) Trends in Black-Hole Research, Chap. 5. Nova Science, New York (2006a) Google Scholar
  4. Berman, M.S.: Energy, brief history of black-holes, and Hawking’s universe. In: Kreitler, P. (ed.) New Developments in Black-Hole Research, Chap. 5. Nova Science, New York (2006b) Google Scholar
  5. Berman, M.S.: On the Machian properties of the universe (2006c, submitted) Google Scholar
  6. Berman, M.S.: Introduction to General Relativity and the Cosmological Constant Problem. Nova Science, New York (2007a) Google Scholar
  7. Berman, M.S.: Is the universe a white-hole? Astrophys. Space Sci. (2007b). doi:  10.1007/s10509-007-9515-7
  8. Berman, M.S.: Introduction to General Relativistic and Scalar-Tensor Cosmologies. Nova Science, New York (2007c) Google Scholar
  9. Berman, M.S., Marinho, R.M.: Astrophys. Space Sci. 278, 367 (2001) MATHCrossRefADSGoogle Scholar
  10. Brans, C., Dicke, R.H.: Phys. Rev. 124, 925 (1961) MATHCrossRefADSMathSciNetGoogle Scholar
  11. Cooperstock, F.I., Israelit, M.: Found. Phys. 25, 631 (1995) CrossRefADSMathSciNetGoogle Scholar
  12. Feynman, R.: Lectures on Gravitation. Addison-Wesley, New York (1962) Google Scholar
  13. Hawking, S.W.: The Universe in a Nutshell. Bantam, New York (2001) Google Scholar
  14. Rosen, N.: Gen. Relativ. Gravit. 26, 319 (1994) CrossRefADSGoogle Scholar
  15. Sabbata, V., Gasperini, M.: Lett. Nuovo Cim. 25, 489 (1979) ADSGoogle Scholar
  16. Sabbata, V., Sivaram, C.: Spin and Torsion in Gravitation. World Scientific, Singapore (1994) MATHGoogle Scholar
  17. Sciama, D.N.: Mon. Not. R. Astron. Soc. 113, 34 (1953) MATHADSMathSciNetGoogle Scholar
  18. Wesson, P.S.: Five Dimensional Physics. World Scientific, Singapore (2006) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Instituto Albert EinsteinCuritibaBrazil

Personalised recommendations