Astrophysics and Space Science

, Volume 311, Issue 1–3, pp 117–125 | Cite as

General relativistic MHD simulations of black hole accretion disks and jets

  • John F. Hawley
  • Kris Beckwith
  • Julian H. Krolik
Original Paper

Abstract

Accretion disks orbiting black holes power high-energy systems such as X-ray binaries and Active Galactic Nuclei. Observations are providing increasingly detailed quantitative information about such systems. This data has been interpreted using standard toy-models that rely on simplifying assumptions such as regular flow geometry and a parameterized stress. Global numerical simulations offer a way to investigate the basic physical dynamics of accretion flows without these assumptions and, in principle, lead to a genuinely predictive theory. In recent years we have developed a fully three-dimensional general relativistic magnetohydrodynamic simulation code that evolves time-dependent inflows into Kerr black holes. Although the resulting global simulations of black hole accretion are still somewhat simplified, they have brought to light a number of interesting results. These include the formation of electro-magnetically dominated jets powered by the black hole’s rotation, and the presence of strong stresses in the plunging region of the accretion flow. The observational consequences of these features are gradually being examined. Increasing computer power and increasingly sophisticated algorithms promise a bright future for the computational approach to black hole accretion.

Keywords

Black holes Magnetohydrodynamics Stars: accretion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agol, E., Krolik, J.H.: Magnetic stress at the marginally stable orbit: altered disk structure, radiation, and black hole spin evolution. Astrophys. J. 528, 161–170 (2000) CrossRefADSGoogle Scholar
  2. Anninos, P., Fragile, P.C., Salmonson, J.D.: Cosmos++: relativistic magnetohydrodynamics on unstructured grids with local adaptive refinement. Astrophys. J. 635, 723–740 (2005) CrossRefADSGoogle Scholar
  3. Antón, L., Zanotti, O., Miralles, J.A., Martí, J.M., Ibáñez, J.M., Font, J.A., Pons, J.A.: Numerical 3+1 general relativistic magnetohydrodynamics: a local characteristic approach. Astrophys. J. 637, 296–312 (2006) CrossRefADSGoogle Scholar
  4. Balbus, S.A., Hawley, J.F.: A powerful local shear instability in weakly magnetized disks. I—Linear analysis. Astrophys. J. 376, 214–233 (1991) CrossRefADSGoogle Scholar
  5. Balbus, S.A., Hawley, J.F.: Instability, turbulence, and enhanced transport in accretion disks. Rev. Mod. Phys. 70, 1–53 (1998) CrossRefADSGoogle Scholar
  6. Blandford, R.D., Payne, D.G.: Hydromagnetic flows from accretion discs and the production of radio jets. Mon. Not. Roy. Astron. Soc. 199, 883–903 (1982) MATHADSGoogle Scholar
  7. Blandford, R.D., Znajek, R.L.: Electromagnetic extraction of energy from Kerr black holes. Mon. Not. Roy. Astron. Soc. 179, 433–456 (1977) ADSGoogle Scholar
  8. De Villiers, J.P., Hawley, J.F.: A numerical method for general relativistic magnetohydrodynamics. Astrophys. J. 589, 458–480 (2003) CrossRefADSGoogle Scholar
  9. De Villiers, J.P., Hawley, J.F., Krolik, J.H.: Magnetically driven accretion flows in the Kerr metric. I. Models and overall structure. Astrophys. J. 599, 1238–1253 (2003) CrossRefADSGoogle Scholar
  10. De Villiers, J.P., Hawley, J.F., Krolik, J.H., Hirose, S.: Magnetically driven accretion in the Kerr metric. III. Unbound outflows. Astrophys. J. 620, 878–888 (2005) CrossRefADSGoogle Scholar
  11. Duez, M.D., Liu, Y.T., Shapiro, S.L., Stephens, B.C.: Relativistic magnetohydrodynamics in dynamical spacetimes: Numerical methods and tests. Phys. Rev. D 72(2), 024028 (2005) CrossRefADSGoogle Scholar
  12. Evans, C.R., Hawley, J.F.: Simulation of magnetohydrodynamic flows—A constrained transport method. Astrophys. J. 332, 659–677 (1988) CrossRefADSGoogle Scholar
  13. Gammie, C.F., McKinney, J.C., Tóth, G.: HARM: A numerical scheme for general relativistic magnetohydrodynamics. Astrophys. J. 589, 444–457 (2003) CrossRefADSGoogle Scholar
  14. Hawley, J.F., Balbus, S.A.: The dynamical structure of nonradiative black hole accretion flows. Astrophys. J. 573, 738–748 (2002) ADSGoogle Scholar
  15. Hawley, J.F., Krolik, J.H.: Magnetically driven jets in the Kerr metric. Astrophys. J. 641, 103–116 (2006) CrossRefADSGoogle Scholar
  16. Hawley, J.F., Stone, J.M.: MOCCT: A numerical technique for astrophysical MHD. Comput. Phys. Commun. 89, 127–148 (1995) MATHCrossRefADSGoogle Scholar
  17. Hirose, S., Krolik, J.H., De Villiers, J., Hawley, J.F.: Magnetically driven accretion flows in the Kerr metric. II. Structure of the magnetic field. Astrophys. J. 606, 1083–1097 (2004) CrossRefADSGoogle Scholar
  18. Kato, Y., Mineshige, S., Shibata, K.: Magnetohydrodynamic accretion flows: formation of magnetic tower jet and subsequent quasi-steady state. Astrophys. J. 605, 307–320 (2004) CrossRefADSGoogle Scholar
  19. Koide, S., Shibata, K., Kudoh, T., Meier, D.L.: Numerical method for general relativistic magnetohydrodynamics in Kerr space-time. J. Korean Astron. Soc. 34, 215–224 (2001) ADSGoogle Scholar
  20. Komissarov, S.S.: General relativistic magnetohydrodynamic simulations of monopole magnetospheres of black holes. Mon. Not. Roy. Astron. Soc. 350, 1431–1436 (2004) CrossRefADSGoogle Scholar
  21. Krolik, J.H., Hawley, J.F., Hirose, S.: Magnetically driven accretion flows in the Kerr metric. IV. Dynamical properties of the inner disk. Astrophys. J. 622, 1008–1023 (2005) CrossRefADSGoogle Scholar
  22. Lynden-Bell, D.: On why discs generate magnetic towers and collimate jets. Mon. Not. Roy. Astron. Soc. 341, 1360–1372 (2003) CrossRefADSGoogle Scholar
  23. McKinney, J.C.: Total and jet Blandford-Znajek power in the presence of an accretion disk. Astrophys. J. 630, L5–L8 (2005) CrossRefADSGoogle Scholar
  24. McKinney, J.C.: General relativistic magnetohydrodynamic simulations of the jet formation and large-scale propagation from black hole accretion systems. Mon. Not. Roy. Astron. Soc. 368, 1561–1582 (2006) CrossRefADSGoogle Scholar
  25. McKinney, J.C., Gammie, C.F.: A Measurement of the electromagnetic luminosity of a Kerr black hole. Astrophys. J. 611, 977–995 (2004) CrossRefADSGoogle Scholar
  26. Novikov, I.D., Thorne, K.S.: Astrophysics of black holes. In: DeWitt, C., DeWitt, B. (eds.) Black Holes: Les Astres Occlus. Gordon and Breach, New York (1973) Google Scholar
  27. Ruffini, R., Wilson, J.R.: Relativistic magnetohydrodynamical effects of plasma accreting into a black hole. Phys. Rev. D 12, 2959–2962 (1975) CrossRefADSGoogle Scholar
  28. Schnittman, J.D., Krolik, J.H., Hawley, J.F.: Light curves from an MHD simulation of a black hole accretion disk. Astrophys. J. 651, 1031–1048 (2006) CrossRefADSGoogle Scholar
  29. Shakura, N.I., Sunyaev, R.A.: Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973) ADSGoogle Scholar
  30. Stone, J.M., Norman, M.L.: ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. II. The magnetohydrodynamic algorithms and tests. Astrophys. J. Suppl. Ser. 80, 791–818 (1992) CrossRefADSGoogle Scholar
  31. Wilson, J.R.: Magnetohydrodynamics near a black hole. NASA STI/Recon Technical Report No. 76, 21098 (1975) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • John F. Hawley
    • 1
  • Kris Beckwith
    • 1
  • Julian H. Krolik
    • 2
  1. 1.Astronomy DepartmentUniversity of VirginiaCharlottesvilleUSA
  2. 2.Department of Physics and AstronomyJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations