Astrophysics and Space Science

, Volume 309, Issue 1–4, pp 523–526 | Cite as

GLAST large area telescope multiwavelength planning

  • O. Reimer
  • P. F. Michelson
  • R. A. Cameron
  • S. W. Digel
  • D. J. Thompson
  • K. S. Wood
Original Article

Abstract

Gamma-ray astrophysics depends in many ways on multiwavelength studies. The Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) Collaboration has started multiwavelength planning well before the scheduled 2007 launch of the observatory. Some of the high-priority multiwavelength needs include: (1) availability of contemporaneous radio and X-ray timing of pulsars; (2) expansion of blazar catalogs, including redshift measurements; (3) improved observations of molecular clouds, especially at high galactic latitudes; (4) simultaneous broad-band blazar monitoring; (5) characterization of gamma-ray transients, including gamma ray bursts; (6) radio, optical, X-ray and TeV counterpart searches for reliable and effective sources identification and characterization. Several of these activities are needed to be in place before launch.

Keywords

Gamma rays Multiwavelength Observatories 

PACS

95.40.+s 95.55.Ka 95.85.Pw 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Böttcher, M., et al.: Coordinated multiwavelength observation of 3C 66A during the WEBT campaign of 2003-2004. Astrophys. J. 631, 169–186 (2005) CrossRefGoogle Scholar
  2. Chen, A., Reyes, L.C., Ritz, S.: Detecting the attenuation of blazar gamma-ray emission by extragalactic background light with the gamma-ray large area space telescope. Astrophys. J. 608, 686–691 (2004) CrossRefGoogle Scholar
  3. Hartman, R.C., et al.: The third EGRET catalog of high-energy gamma-ray sources. Astrophys. J. Suppl. Ser. 123, 79–202 (1999) CrossRefGoogle Scholar
  4. Michelson, P.: Instrument for the gamma-ray large area space telescope (GLAST) mission. In: J.E. Trümper, H.D. Tananbaum (eds.) X-Ray and Gamma-Ray Telescopes and Instruments for Astronomy. Proc. SPIE, vol. 4851, pp. 1144–1150 (2003) Google Scholar
  5. Mirabal, N., Halpern, J.P.: A neutron star identification for the high-energy gamma-ray source 3EG J1835+5918 detected in the ROSAT all-sky survey. Astrophys. J. 547, L137–L140 (2001) CrossRefGoogle Scholar
  6. Reimer, O., et al.: Multifrequency studies of the enigmatic gamma-ray source 3EG J1835+5918. Mon. Not. Roy. Astron. Soc. 324, 772–780 (2001) CrossRefGoogle Scholar
  7. Strong, A.S., Moskalenko, I.V., Reimer, O.: Diffuse continuum gamma rays from the galaxy. Astrophys. J. 537, 763–784 (2000) CrossRefGoogle Scholar
  8. Thompson, D.J.: Gamma ray pulsars. In: Cheng, K.S., Romero, G.E. (eds.) Cosmic Gamma-Ray Sources, pp. 149–168. Kluwer Academic, Dordrecht (2004) Google Scholar
  9. Torres, D.F., Dame, T.M., Digel, S.W.: High-latitude molecular clouds as gamma-ray sources for the gamma-ray large area space telescope. Astrophys. J. 621, L29–L32 (2005) CrossRefGoogle Scholar
  10. Wallace, P.M., et al.: An active galactic nucleus identification for 3EG J2006-2321. Astrophys. J. 569, 36–43 (2001) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • O. Reimer
    • 1
  • P. F. Michelson
    • 1
  • R. A. Cameron
    • 2
  • S. W. Digel
    • 2
  • D. J. Thompson
    • 3
  • K. S. Wood
    • 4
  1. 1.HEPL & KIPACStanford UniversityStanfordUSA
  2. 2.SLAC & KIPACStanford UniversityMenlo ParkUSA
  3. 3.NASA Goddard Space Flight CenterGreenbeltUSA
  4. 4.Naval Research LaboratoryWashingtonUSA

Personalised recommendations