Astrophysics and Space Science

, Volume 309, Issue 1–4, pp 351–357 | Cite as

Gamma rays from colliding winds of massive stars

Original Article

Abstract

Colliding winds of massive binaries have long been considered as potential sites of non-thermal high-energy photon production. This is motivated by the detection of non-thermal spectra in the radio band, as well as by correlation studies of yet unidentified EGRET γ-ray sources with source populations appearing in star formation regions.

This work re-considers the basic radiative processes and its properties that lead to high energy photon production in long-period massive star systems. We show that Klein–Nishina effects as well as the anisotropic nature of the inverse Compton scattering, the dominating leptonic emission process, likely yield spectral and variability signatures in the γ-ray domain at or above the sensitivity of current or upcoming gamma ray instruments like GLAST-LAT. In addition to all relevant radiative losses, we include propagation (such as convection in the stellar wind) as well as photon absorption effects, which a priori can not be neglected.

The calculations are applied to WR 140 and WR 147, and predictions for their detectability in the γ-ray regime are provided. Physically similar specimen of their kind like WR 146, WR 137, WR 138, WR 112 and WR 125 may be regarded as candidate sources at GeV energies for near-future γ-ray experiments.

Finally, we discuss several aspects relevant for eventually identifying this source class as a γ-ray emitting population. Thereby we utilize our findings on the expected radiative behavior of typical colliding wind binaries in the γ-ray regime as well as its expected spatial distribution on the γ-ray sky.

Keywords

Stars: early-type Stars: binaries Stars: winds, outflows Gamma rays: theory Radiation mechanisms: non-thermal 

PACS

97.20.Ec 97.80.-d 97.10.Me 95.30.Gv 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, D.C., Bieging, J.H., Churchwell, E., Torres, A.V.: Astrophys. J. 303, 239 (1986) CrossRefGoogle Scholar
  2. Benaglia, P., Romero, G.E., Stevens, I.R., Torres, D.F.: Astron. Astrophys. 366, 605 (2001) CrossRefGoogle Scholar
  3. Benaglia, P., Romero, G.E.: Astron. Astrophys. 399, 1121 (2003) CrossRefGoogle Scholar
  4. Benaglia, P., Romero, G.E., Koribalski, B., Pollock, A.M.T.: Astron. Astrophys. 440, 743 (2005) CrossRefGoogle Scholar
  5. Chen, W., White, R.L.: Astrophys. J. 366, 512 (1991) CrossRefGoogle Scholar
  6. Chlebowski, T., Garmany, C.: Astrophys. J. 368, 241 (1991) CrossRefGoogle Scholar
  7. Dougherty, S.M., Williams, P.M.: Mon. Not. Roy. Astron. Soc. 319, 1005 (2000) CrossRefGoogle Scholar
  8. Dougherty, S.M., Beasley, A.J., Claussen, M.J., et al.: Astrophys. J. 623, 447 (2005) CrossRefGoogle Scholar
  9. Eichler, D., Usov, V.: Astrophys. J. 402, 271 (1993) CrossRefGoogle Scholar
  10. Gayley, K.G., Owocki, S.P., Cranmer, S.R.: Astrophys. J. 475, 786 (1997) CrossRefGoogle Scholar
  11. Igance, R., Cassinelli, J.P., Bjorkman, J.E.: Astrophys. J. 505, 910 (1998) CrossRefGoogle Scholar
  12. Leitherer, C., Chapman, J.M., Koribalski, B.: Astrophys. J. 450, 289 (1995) CrossRefGoogle Scholar
  13. Leitherer, C., Chapman, J.M., Koribalski, B.: Astrophys. J. 481, 898 (1997) CrossRefGoogle Scholar
  14. Mathys, G.: In: Wolf, B., et al. (eds.), Variable and Non-Spherical Stellar Winds in Luminous Hot Stars. Lecture Notes in Physics, vol. 523, p. 95 (1999) Google Scholar
  15. Mücke, A., Pohl, M.: In: Interacting Winds from Massive Stars. ASP Conf. Ser., 260, 355 (2002) Google Scholar
  16. Pittard, J.M., Dougherty, S.M.: Mon. Not. Roy. Astron. Soc. 372, 801 (2006) CrossRefGoogle Scholar
  17. Pittard, J.M., Stevens, I.R., Williams, P.M., et al.: Astron. Astrophys. 388, 335 (2002) CrossRefGoogle Scholar
  18. Pollock, A.M.T.: Astron. Astrophys. 171, 135 (1987) Google Scholar
  19. Prantzos, N., Casse, M.: Astrophys. J. 307, 324 (1986) CrossRefGoogle Scholar
  20. Rauw, G.: In: Cheng, K.S., Romero, G. (eds.) Cosmic Gamma-Ray Sources. Astrophysics & Space Science Library, vol. 304 (2004) Google Scholar
  21. Reed, B.C.: Astron. J. 120, 314 (2000) CrossRefGoogle Scholar
  22. Reimer, A., Pohl, M., Reimer, O.: Astron. Astrophys. 644, 1118 (2006) Google Scholar
  23. Reynolds, A.P.: Astrophys. J. 256, 13 (1982a) CrossRefGoogle Scholar
  24. Reynolds, A.P.: Astrophys. J. 256, 38 (1982b) CrossRefGoogle Scholar
  25. Romero, G.E., Benaglia, P., Torres, D.F.: Astron. Astrophys. 348, 868 (1999) Google Scholar
  26. Setia Gunawan, D.Y.A., de Bruyn, A.G., van der Hucht, K.A., et al.: Astron. Astrophys. 368, 484 (2001) CrossRefGoogle Scholar
  27. Stevens, I.R., Pollock, A.M.T.: Mon. Not. Roy. Astron. Soc. 269, 226 (1994) Google Scholar
  28. Torres, D.F., Domingo-Santamaría, E., Romero, G.E.: Astrophys. J. 601, L75 (2004) CrossRefGoogle Scholar
  29. Usov, V.V.: Astrophys. J. 389, 635 (1992) CrossRefGoogle Scholar
  30. van der Hucht, K.A.: New Astron. Rev. 45, 135 (2001) CrossRefGoogle Scholar
  31. van der Hucht, K.A.: Astron. Astrophys. 458, 453 (2006) CrossRefGoogle Scholar
  32. Völk, H.J., Forman, M.: Astrophys. J. 253, 188 (1982) CrossRefGoogle Scholar
  33. Weber, E.J., Davis, L. Jr.: Astrophys. J. 148, 217 (1967) CrossRefGoogle Scholar
  34. White, R.L.: Astrophys. J. 289, 698 (1985) CrossRefGoogle Scholar
  35. White, R.L., Chen, W.: Astrophys. J. 387, 81 (1992) CrossRefGoogle Scholar
  36. Williams, P.M., van der Hucht, K.A., Pollock, A.M.T., et al.: Mon. Not. Roy. Astron. Soc. 243, 662 (1990) Google Scholar
  37. Williams, P.M., Dougherty, S.M., Davis, R.J., et al.: Mon. Not. Roy. Astron. Soc. 289, 10 (1997) Google Scholar
  38. Wright, A.E., Barlow, M.J.: Mon. Not. Roy. Astron. Soc. 170, 41 (1975) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.W.W. Hansen Experimental Physics LaboratoryStanford UniversityStanfordUSA
  2. 2.Department of Physics and AstronomyIowa State UniversityAmesUSA

Personalised recommendations