Astrophysics and Space Science

, Volume 308, Issue 1–4, pp 481–485 | Cite as

Instabilities in rotating relativistic stars driven by viscosity

Original Article


We investigate the instability driven by viscosity in rotating relativistic stars by means of an iterative approach. We focus on polytropic rotating equilibrium stars and impose an m=2 perturbation in the lapse. We vary both the stiffness of the equation of state and the compactness of the star to study these factors on the critical value T/W for the instability. For a rigidly rotating star, the criterion T/W, where T is the rotational kinetic energy and W the gravitational binding energy, mainly depends on the compactness of the star and takes values around 0.13–0.16, which slightly differ from that of Newtonian incompressible stars (∼0.14). For differentially rotating stars, the critical value of T/W is found to span the range 0.17–0.25. The value is significantly larger than in the rigidly rotating case with the same compactness of the star. Finally we discuss the possibility of detecting gravitational waves from viscosity-driven instabilities using ground-based interferometers.


Instabilities Stars: rotation Relativity Gravitational waves 


04.40.Dg 04.25.Dm 04.30.Db 97.10.Kc 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bonazzola, S., Frieben, J., Gourgoulhon, E.: Astrophys. J. 460, 379 (1996) CrossRefADSGoogle Scholar
  2. Bonazzola, S., Frieben, J., Gourgoulhon, E.: Astron. Astrophys. 331, 280 (1998) ADSGoogle Scholar
  3. Chandrasekhar, S.: Ellipsoidal Figures of Equilibrium. Yale University Press, New York (1969), Chap. 5 MATHGoogle Scholar
  4. Gondek-Rosińska, D., Gourgoulhon, E.: Phys. Rev. D 66, 044021 (2002) CrossRefADSGoogle Scholar
  5. Lai, D., Shapiro, S.L.: Astrophys. J. 442, 259 (1995) CrossRefADSGoogle Scholar
  6. Saijo, M., Gourgoulhon, E.: Phys. Rev. D 74, 084006 (2006) CrossRefADSGoogle Scholar
  7. Tassoul, J.: Theory of Rotating Stars. Princeton University Press, New Jersey (1978), Chap. 10 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.School of MathematicsUniversity of SouthamptonSouthamptonUK
  2. 2.Laboratoire de l’Univers et de ses Théories, UMR 8102 du CNRSObservatoire de ParisMeudon CedexFrance

Personalised recommendations