Advertisement

Astrophysics and Space Science

, Volume 307, Issue 1–3, pp 335–340 | Cite as

Scalable Dynamics of High Energy Relativistic Electrons: Theory, Numerical Simulations and Experimental Results

  • T. BaevaEmail author
  • S. Gordienko
  • A. Pukhov
Original Article

Abstract

Similarity theory, which is necessary in order to apply the results of laboratory astrophysics experiments to relativistic astrophysical plasmas, is presented. The analytical predictions of the similarity theory are compared with PIC numerical simulations and the most recent experimental data on monoenergetic electron acceleration in diluted plasmas and high harmonic generation at overdense plasma boundaries. We demonstrate that similarity theory is a reliable tool for explaining a surprisingly wide variety of laboratory plasma phenomena the predictions of which can be scaled up to astrophysical dimensions.

Keywords

Similarity theory Laser-plasma interaction Particle acceleration X-ray generation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baeva, T., et al.: Phys. Rev. E 74, 1 (2006)Google Scholar
  2. Baeva, T.: Diploma thesis: “Attosecond phenomena in laser-condensed matter interaction”, Düsseldorf University (2005)Google Scholar
  3. Birkhoff, G.: Hydrodynamics. University Press, Princeton, NJ (1960)Google Scholar
  4. Dromey, B., Zepf, M., Gopal, A., et al.: Nature Phys. 2, 456 (2006)CrossRefADSGoogle Scholar
  5. Faure, J., et al.: Nature 431, 541 (2004)CrossRefADSGoogle Scholar
  6. Gordienko, S., et al.: Phys. Rev. Lett. 93, 115003 (2004)CrossRefADSGoogle Scholar
  7. Gordienko, S., Pukhov, A.: Phys. Plasmas 12, 043109 (2005)CrossRefGoogle Scholar
  8. Pukhov, A.: J. Plasma Phys. 61, 425 (1999)CrossRefADSGoogle Scholar
  9. Pukhov, A., Gordienko, S.: Phil. Trans. R. Soc. A 364, 623 (2006)CrossRefADSGoogle Scholar
  10. Pukhov, A., Meyer-ter-Vehn, J.: Appl. Phys. B 74, 355 (2002)CrossRefADSGoogle Scholar
  11. Remington, B., Drake, R.P., Takabe, H., Arnett, A.: Science 284, 1488 (1999)CrossRefADSGoogle Scholar
  12. Remington, B., et al.: Phys. Plasma 7, 1641 (2000)CrossRefADSGoogle Scholar
  13. Ryutov, D.D., Remington, B.: Plasma Phys. Control. Fussion 48, L23 (2006)CrossRefADSGoogle Scholar
  14. Sedov, L.I.: Similarity and dimentional methods in mechanics, 10th edn. CRC Press, Boca Reton, FL (1993)Google Scholar
  15. Strickland, D., Mourou, G.: Opt. Comm. 56, 219 (1985)CrossRefADSGoogle Scholar
  16. Takaba, H., et al.: Plasma Phys. Control. Fussion 41, A75 (1999)CrossRefADSGoogle Scholar
  17. Zepf, M.: International Conference on the Interaction of Atoms, Molecules and Plasmas with Intense Ultrashort Laser Pulses 1–5 Szeged, Hungary (2006)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Institut für Theoretische Physik IHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany
  2. 2.L. D. Landau Institute for Theoretical PhysicsMoscowRussia

Personalised recommendations