Astrophysics and Space Science

, 305:305 | Cite as

Solution of Generalized Fractional Reaction-Diffusion Equations

Original Article

Abstract

This paper deals with the investigation of a closed form solution of a generalized fractional reaction-diffusion equation. The solution of the proposed problem is developed in a compact form in terms of the H-function by the application of direct and inverse Laplace and Fourier transforms. Fractional order moments and the asymptotic expansion of the solution are also obtained.

Keywords

Fractional reaction-diffusion Integral transforms Mittag-Leffler function Fox H-function 

References

  1. Brychkov, Yu.A., Prudnikov, A.P.: Integral transforms of generalized functions. Gordon and Breach, New York (1989)MATHGoogle Scholar
  2. Caputo, M.: Elasticita e dissipazione. Zanichelli, Bologna (1969)Google Scholar
  3. Compte, A.: Stochastic foundations of fractional dynamics. Phys. Rev. E 53, 4191–4193 (1996)CrossRefADSGoogle Scholar
  4. Del-Castillo-Negrete, D., Carreras, B.A., Lynch, V.E.: Front dynamics in reaction-diffusion systems with Lévy flights: A fractional diffusion approach. arXiv:nlin.PS/0212039 v2 (2003)Google Scholar
  5. Del-Castillo-Negrete, D., Carreras, B.A., Lynch, V.E.: Front propagation and segregation in a reaction-diffusion model with cross-diffusion. Physica D 168–169, 45–60 (2002)MathSciNetCrossRefGoogle Scholar
  6. Dzherbashyan, M.M.: Integral transforms and representation of functions in complex domain (in Russian). Nauka, Moscow (1966)Google Scholar
  7. Dzherbashyan, M.M.: Harmonic analysis and boundary value problems in the complex domain. Birkhäuser-Verlag, Basel, London (1993)Google Scholar
  8. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher transcendental functions, vol. 1. McGraw-Hill, New York, Toronto, and London (1953)Google Scholar
  9. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Tables of integral transforms, vol. 1. McGraw-Hill, New York, Toronto, and London (1954a)MATHGoogle Scholar
  10. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Tables of integral transforms, vol. 2. McGraw-Hill, New York, Toronto, and London (1954b)MATHGoogle Scholar
  11. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher transcendental functions, vol. 3. McGraw-Hill, New York, Toronto, and London (1955)MATHGoogle Scholar
  12. Frank, T.D.: Nonlinear Fokker-Planck equations: fundamentals and applications. Springer-Verlag, Berlin-Heidelberg (2005)MATHGoogle Scholar
  13. Gelfand I.M., Shilov, G.F.: Generalized functions, vol. 1. Academic Press, London (1964)Google Scholar
  14. Haken, H.: Synergetics: introduction and advanced topics. Springer-Verlag, Berlin-Heidelberg (2004)Google Scholar
  15. Haubold, H.J., Mathai, A.M.: A heuristic remark on the periodic variation in the number of solar neutrinos detected on Earth. Astrophys. Space Sci. 228, 113–134 (1995)CrossRefADSGoogle Scholar
  16. Haubold, H.J., Mathai, A.M.: The fractional kinetic equation and thermonuclear functions. Astrophys. Space Sci. 273, 53–63 (2000)MATHCrossRefADSGoogle Scholar
  17. Henry, B.I., Wearne, S.L.: Fractional reaction-diffusion. Physica A 276, 448–455 (2000)MathSciNetCrossRefADSGoogle Scholar
  18. Henry, B.I., Wearne, S.L.: Existence of Turing instabilities in a two-species fractional reaction-diffusion system. SIAM J. Appl. Math. 62, 870–887 (2002)MATHMathSciNetCrossRefGoogle Scholar
  19. Henry, B.I., Langlands, T.A.M., Wearne, S.L.: Turing pattern formation in fractional activator-inhibitor systems. Phys. Rev. E 72, 026101 (2005)MathSciNetCrossRefADSGoogle Scholar
  20. Jespersen, S., Metzler, R., Fogedby, H.C.: Lévy flights in external force fields: Langevin and fractional Fokker-Planck equations and their solutions. Phys. Rev. E 59, 2736–2745 (1999)CrossRefADSGoogle Scholar
  21. Kilbas, A.A., Pierantozzi, T., Trujillo, J.J., Vazquez, L.: On generalized fractional evolution-diffusion equation. in press (2005)Google Scholar
  22. Kilbas, A.A., Saigo, M.: H-Transforms: Theory and applications. Chapman and Hall/CRC, New York (2004)MATHGoogle Scholar
  23. Mathai, A.M., Saxena, R.K.: The H-function with applications in statistics and other disciplines. Halsted Press [John Wiley & Sons], New York, London and Sydney (1978)MATHGoogle Scholar
  24. Metzler, R., Klafter, J.: The random walk's guide to anomalous diffusion: A fractional dynamics approach. Physics Reports 339, 1–77 (2000)MATHMathSciNetCrossRefADSGoogle Scholar
  25. Metzler, R., Klafter, J.: The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A: Math. Gen. 37, R161–R208 (2004)MATHMathSciNetCrossRefADSGoogle Scholar
  26. Miller, K.S., Ross, B.: An introduction to the fractional calculus and fractional differential equations. John Wiley & Sons, New York (1993)MATHGoogle Scholar
  27. Mittag-Leffler, M.G.: Sur la nouvelle fonction Eα(x), Comptes Rendus Acad. Sci. Paris (Ser. II) 137, 554–558 (1903)Google Scholar
  28. Mittag-Leffler, M.G.: Sur la representation analytique d’une fonction branche uniforme d’une fonction Monogene, Acta Math. 29, 101–181 (1905)MATHCrossRefMathSciNetGoogle Scholar
  29. Nicolis, G., Prigogine, I.: Self-organization in nonequilibrium systems: From dissipative structures to order through fluctuations. John Wiley & Sons, New York (1977)MATHGoogle Scholar
  30. Oldham, K.B., Spanier, J.: The fractional calculus: theory and applications of differentiation and integration to arbitrary order. Academic Press, New York (1974)MATHGoogle Scholar
  31. Podlubny, I.: Fractional differential equations. Academic Press, San Diego (1999)MATHGoogle Scholar
  32. Prudnikov, A.P., Brychkov, Yu.A., Marichev, O.I.: Integrals and series, vol. 3. More Special Functions, Gordon and Breach, New York (1989)Google Scholar
  33. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional integrals and derivatives: Theory and applications. Gordon and Breach, New York (1990)Google Scholar
  34. Saxena, R.K., Mathai, A.M., Haubold, H.J.: On fractional kinetic equations. Astrophys. Space Sci. 282, 281–287 (2002)CrossRefADSGoogle Scholar
  35. Saxena, R.K., Mathai, A.M., Haubold, H.J.: On generalized fractional kinetic equations. Physica A 344, 657–664 (2004a)MathSciNetCrossRefADSGoogle Scholar
  36. Saxena, R.K., Mathai, A.M., Haubold, H.J.: Unified fractional kinetic equation and a fractional diffusion equation. Astrophys. Space Sci. 290, 299–310 (2004b)CrossRefADSGoogle Scholar
  37. Saxena, R.K., Mathai, A.M., Haubold, H.J.: Astrophysical thermonuclear functions for Boltzmann-Gibbs statistics and Tsallis statistics. Physica A 344, 649–656 (2004c)MathSciNetCrossRefADSGoogle Scholar
  38. Saxena, R.K., Mathai, A.M., Haubold, H.J.: Fractional reactiondiffusion equations. Astrophys. Space Sci. 305(1), DOI 10.1007/s10509-006-9189-6 (2006)Google Scholar
  39. Wilhelmsson, H., Lazzaro, E.: Reaction-diffusion problems in the physics of hot plasmas. Institute of Physics Publishing, Bristol and Philadelphia (2001)CrossRefGoogle Scholar
  40. Wiman, A.: Ueber den Fundamentalsatz in der Theorie der Funktionen Eα(x), Acta Mathematica 29, 191–201 (1905)MATHCrossRefMathSciNetGoogle Scholar
  41. Wright, E.M.: On the coefficients of power series having exponential singularities, J. Lond. Math. Soc. 8, 71–79 (1933)MATHGoogle Scholar
  42. Wright, E.M.: The asymptotic expansion of the generalized hypergeo- metric functions, J. Lond. Math. Soc. 10, 386–293 (1935)CrossRefGoogle Scholar
  43. Wright, E.M.: The asymptotic expansion of the generalized hypergeo- metric functions, Proc. Lond. Math. Soc. 46, 389–408 (1940)MATHGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsJai Narain Vyas UniversityJodhpurIndia
  2. 2.Department of Mathematics and StatisticsMcGill UniversityMontrealCanada
  3. 3.Office for Outer Space AffairsUnited NationsViennaAustria

Personalised recommendations