Astrophysics and Space Science

, Volume 307, Issue 1–3, pp 273–277 | Cite as

He Conductivity in Cool White Dwarf Atmospheres

  • S. Mazevet
  • M. Challacombe
  • P. M. Kowalski
  • D. Saumon
Original Article


We investigate the conductivity of warm dense helium under conditions found in the atmospheres of cool white dwarfs using ab initio simulations. The calculations performed consist of quantum molecular dynamics simulations where the electronic wavefunction at each time step is obtained using density functional theory, while the ion trajectories are calculated using the resulting quantum mechanical forces. We use both conventional DFT (PW91) and hybrid (PBE0) functionals to calculate the conductivities that provide an estimate of the ionization fraction. While the calculations are in good agreement with the measurements for the equation of state, a significant discrepancy exists with the recently measured conductivity.


Atomic processes Dense matter Equation of state Plasmas Radiation mechanisms:general 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blochl, P.E.: Phys. Rev. B 50, 17953 (1994); Kresse, G., Joubert, J.: Phys. Rev. B 59, 1758 (1999)Google Scholar
  2. Cellier, P., Loubeyre, P.: Private CommunicationGoogle Scholar
  3. Challacombe, M., Tymczak, C.J., Nemeth, K., Weber, V., Gan, C.K., Schwegler, E., Henkelman, G., Niklasson, A.: Los Alamos National Laboratory, LA-CC-04-086Google Scholar
  4. Callaway, J.: {Quantum theory of the solid state. Academic Press New York (1974)Google Scholar
  5. Desjarlais, M.P.: Phys. Rev. B 68, 064204 (2003)Google Scholar
  6. Fontaine, G., Brassard, P., Bergeron, P.: PASP 113, 409 (2001)Google Scholar
  7. Fontaine, G., Graboske, H.C., Van Horn, H.M.: ApJS 35 (1977)Google Scholar
  8. Fortov, V. et al.: JETP 97, 259 (2003)Google Scholar
  9. Harrison, W.A.: Solid state theory. Mc Graw-Hill (1970)Google Scholar
  10. Hedin, L.: Phys. Rev. 139, A796 (1965)Google Scholar
  11. Iglesias, C.A., Rogers, F.J., Saumon, D.: Astrophysical Journal Letter, 569, L111 (2002)Google Scholar
  12. Kresse, G., Hafner, J.: Phys. Rev. B 47, RC558 (1993); Kresse, G., Furthmüller, J.: Comput. Mat. Sci. 6, 15–50 (1996); Kresse, G., Furthmüller, J.: Phys. Rev. B 54, 111Google Scholar
  13. Kress, J.D., Mazevet, S., Collins, L.A., Wood, W.W.: Phys. Rev. B 63, 024203 (2001)Google Scholar
  14. Mermin, N.D.: Phys. Rev. 137A, 1441 (1965)Google Scholar
  15. Mazevet, S., Kress, J., Collins, L.A.: Atomic Processes in Plasmas, AIP 730, 139 (2004)Google Scholar
  16. Martin,R.M.: {Electronic structure. Cambridge University Press, (2004)Google Scholar
  17. Nellis, W.J.: {etal., Phys. Rev. Lett. 53, 1248 (1984)Google Scholar
  18. Onida, G., Reining, L., Rubio, A.: Rev. Mod. Phys. 74, 601 (2002)Google Scholar
  19. Perdew, J.P., Wang, Y.: Phys. Rev. B 46, 12947 (1992)Google Scholar
  20. Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)Google Scholar
  21. Perdew, J.P., Ernzerhof, M., Burke, K.: J. Chem. Phys. 105, 9982 (1996)Google Scholar
  22. Saumon, D., Chabrier, G., Van Horn, H.M.: Astrophysical Journal Supplement Series, 99, 713–41 (1995)CrossRefADSGoogle Scholar
  23. Young, D.A., McMahan, A.K., Ross, M.: Phys. Rev. B 24, 5119 (1981)Google Scholar
  24. Zeldovich, Ya., Raizer, Yu.: {Physics of shock waves and high-temperature hydrodynamic phenomena (Academic Press, New York, 1966)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • S. Mazevet
    • 1
  • M. Challacombe
    • 1
  • P. M. Kowalski
    • 2
  • D. Saumon
    • 1
    • 2
  1. 1.Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Applied Physics DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations