Astrophysics and Space Science

, Volume 299, Issue 1, pp 83–108 | Cite as

A Cosmological Explanation to the Pioneer Anomaly

Abstract

An earlier paper introduced a new cosmological theory based on the proposition that all four metrical coefficients of space and time change with the cosmological expansion. Such a universal scale expansion would preserve the four-dimensional spacetime geometry and therefore by general relativity most physical relationships. In addition, if the scale expansion were exponential with time, all epochs would be equivalent. The theory resolves several outstanding problems with the standard model based on the Big Bang concept and better agrees with observations. Four independent observational programs support the SEC theory, which also provides an explanation to the Pioneer anomaly. A possible resolution to the recently discovered discrepancies between optical observations of the planets and their ephemerides is proposed.

Keywords

space and time expansion space and time equivalence scale expansion space and time symmetry cosmic drag tired light redshift Pioneer anomaly accelerating planets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J.: 2002, Phys. Rev. D 65, 082004.CrossRefGoogle Scholar
  2. Bouwens, R., Broadhurst, T. and Silk, J.: 1998a, ApJ 505, 556–578.Google Scholar
  3. Bouwens, R., Broadhurst, T. and Silk, J.: 1998b, ApJ 505, 579–589.CrossRefGoogle Scholar
  4. Crawford, D.S.: 1999, astro-ph/9904150.Google Scholar
  5. Dicke, R.H.: 1966, The Secular Acceleration of the Earth’s Rotation and Cosmology. The Earth-Moon System, Plenum, pp. 98–164.Google Scholar
  6. Djorgovski, S. and Spinrad, H.: 1981, ApJ 251, 417.CrossRefGoogle Scholar
  7. Einstein, A.: 1917, Cosmological Considerations on the General Theory of Relativity. Trans. from: Sitzungsberichte der Preussischen Akad. d. Wissenschaften.Google Scholar
  8. Hubble, E.: 1929, Proc. Natl. Acad. Sci. (U.S.A.) 15, 168.Google Scholar
  9. Kolesnik, Y.B.: 1995, A& A 294, 876.Google Scholar
  10. Kolesnik, Y.B.: 1996, in: S. Ferraz-Mello (eds.), Dynamics, Ephemerides and Astrometry of the Solar System, Reidel, Dordrecht, The Netherlands, p. 477.Google Scholar
  11. Kolesnik, Y. and Masreliez, C.J.: 2004, AJ 128(2), 878.CrossRefGoogle Scholar
  12. Krasinsky, G.A., Aleshkina, E.Y., Pitijeva, E.V. and Sveshnikov, M.L.: 1986, in: J. Kovalevsky and V.A. Brumberg (eds.), Relativity in Celestial Mechanics and Astronomy, p. 215.Google Scholar
  13. Krasinsky, G.A., Pitjeva, E.V., Sveshnikov, M.L. and Chunayeva, L.I.: 1993, Cel. Mec. Dyn. Astron. 55, 1.CrossRefGoogle Scholar
  14. LaViolette, P.A.: 1986, ApJ Lett. 301, 544–553.CrossRefGoogle Scholar
  15. Lubin, L. and Sandage, A. 2001a, astro-ph/0102213.Google Scholar
  16. Lubin, L. and Sandage, A.: 2001b, astro-ph/0102214.Google Scholar
  17. Lubin, L. and Sandage, A.: 2001c, astro-ph/0106563.Google Scholar
  18. Lubin, L. and Sandage, A.: 2001d, astro-ph/0106566.Google Scholar
  19. Masreliez, C.J.: 1999, Ap& SS 266(3), 399–447.Google Scholar
  20. Masreliez, C.J.: 2004a, Scale Expanding Cosmos Theory I –An introduction, Apeiron, July.Google Scholar
  21. Masreliez, C.J.: 2004b, Scale Expanding Cosmos Theory II –Cosmic Drag, Apeiron, October.Google Scholar
  22. Masreliez, C.J.: 2004c, Scale Expanding Cosmos Theory III –Gravitation, Apeiron, October.Google Scholar
  23. Masreliez, C.J.: 2005, Scale Expanding Cosmos Theory IV –A Possible Link Between General Relativity and Quantum Mechanics, Apeiron, October.Google Scholar
  24. Metcalfe, N.: 1995, Mon. Not. R. Astron. Soc. 273, 257–276.Google Scholar
  25. Newton, R.R.: 1985, The Moon’s Acceleration and Its Physical Origins, Vol. 1 and 2, John Hopkin’s University Press.Google Scholar
  26. Oesterwinter, C. and Cohen, C.J.: 1972, Cel. Mech. 5, 317.CrossRefGoogle Scholar
  27. Perlmutter, S.: 1995, ApJ 440, 41.CrossRefGoogle Scholar
  28. Perlmutter, S.: 2003, Phys. Today April (53–58).Google Scholar
  29. Poppe, P.S.R., Leister, N., Laclare, F. and Delmas, C.: 1999, ApJ 116, 2574.Google Scholar
  30. Reasenberg, R.D. and Shapiro, I.I.: 1978, in: L. Halpern (ed.), On the Measurement of Cosmological Variations of the Gravitational Constant, University Press of Florida, Gainesville, p. 71.Google Scholar
  31. Schmidt, B.:1998, ApJ 507, 46.CrossRefGoogle Scholar
  32. Seidelman, P.K.: 1992, in: S. Ferraz-Mello (eds.), Chaos, Resonance and Collective Dynamical Phenomena in the Solar System, Kluwer, Dordrecht, The Netherlands, p. 49.Google Scholar
  33. Seidelman, P.K., Santoro, E.J. and Pulkkinen, K.F.:1985, in: V. Szebenhey and B. Balazs (eds.), Dynamical Astronomy, Austin, TX, p. 55.Google Scholar
  34. Seidelman, P.K., Santoro, E.J. and Pulkkinen, K.F.: 1986, in: J. Kovalevsky and V.A. Brumberg (eds.), Relativity in Celestial Mechanics and Astrometry, Kluwer, Dordrecht, The Netherlands, p. 99.Google Scholar
  35. Spencer, J.: 1939, Mon. Not. R. Astron. Soc. 99, 541.Google Scholar
  36. Standish, E.M.: 1998, A& A 336, 381–384.Google Scholar
  37. Standish, E.M. and Williams, J.G.: 1990, in: J.H. Lieske and V.K. Abalakin (eds.), Inertial Coordinate System on the Sky, Kluwer, Dordrecht, The Netherlands, p. 173.Google Scholar
  38. Tegmark, M. et al.: 2003, PRD 69, 103501.CrossRefGoogle Scholar
  39. Wright, N.: 2001, web page: www.astro.ucla.edu/∼wright/tiredlit.htmGoogle Scholar
  40. Yao, Z.-G. and Smith, C.: 1988, in: S. Débarbat, J.A. Eddy, H.K. Eichhorn and A.R. Upgren (eds.), Mapping the Sky, Kluwer, Dordrecht, The Netherlands, p. 501.Google Scholar
  41. Yao, Z.-G. and Smith, C.: 1991, Ap& SS 177, 181.Google Scholar
  42. Yao, Z.-G. and Smith, C.: 1993, in: I.I. Muller and B. Kolaczek (eds.), Developments in Astrometry and Their Impact on Astrophysics and Geodynamics, Kluwer, Dordrecht, The Netherlands, p. 403.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.The EST FoundationRedmondUSA

Personalised recommendations