Astrophysics and Space Science

, Volume 298, Issue 1–2, pp 305–312 | Cite as

Studying Hydrodynamic Instability Using Shock-Tube Experiments

  • O. Sadot
  • K. Levy
  • A. Yosef-Hai
  • D. Cartoon
  • Y. Elbaz
  • Y. Srebro
  • G. Ben-Dor
  • D. Shvarts
Article

Abstract

The hydrodynamic instability, which develops on the contact surface between two fluids, has great importance in astrophysical phenomena such as the inhomogeneous density distribution following a supernova event. In this event acceleration waves pass across a material interface and initiate and enhance unstable conditions in which small perturbations grow dramatically.

In the present study, an experimental technique aimed at investigating the above-mentioned hydrodynamic instability is presented. The experimental investigation is based on a shock-tube apparatus by which a shock wave is generated and initiates the instability that develops on the contact surface between two gases. The flexibility of the system enables one to vary the initial shape of the contact surface, the shock-wave Mach number, and the density ratio across the contact surface.

Three selected sets of shock-tube experiments are presented in order to demonstrate the system capabilities: (1) large-initial amplitudes with low-Mach-number incident shock waves; (2) small-initial amplitudes with moderate-Mach-number incident shock waves; and (3) shock bubble interaction.

In the large-amplitude experiments a reduction of the initial velocity with respect to the linear growth prediction was measured. The results were compared to those predicted by a vorticity-deposition model and to previous experiments with moderate- and high-Mach number incident shock waves that were conducted by others. In this case, a reduction of the initial velocity was noted. However, at late times the growth rate had a 1/t behavior as in the small-amplitude low-Mach number case. In the small-amplitude moderate-Mach number shock experiments a reduction from the impulsive theory was noted at the late stages.

The passage of a shock wave through a spherical bubble results in the formation of a vortex ring. Simple dimensional analysis shows that the circulation depends linearly on the speed of sound of the surrounding material and on the initial bubble radius.

Keywords

Richtmyer-Meshkov instability turbulent mixing shock-tube experiments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleshin, A.N., Lazareva, E.V., Chebotareva, E.I., Sergeev, S.V. and Zaytsev, S.G.: 1997, 6th IWCTM Conf., 1 Marseille, France.Google Scholar
  2. Aleshin, A.N., Lazareva, E.V., Zaitsev, S.G, Rozanov, V.B., Gamali, E.G. and Lebo, I.G.: 1990, Sov. Phys. Dokl. 35, 159.Google Scholar
  3. Alon, U., Hecht, J., Ofer, D. and Shvarts, D.: 1995, Phys. Rev. Lett. 74, 534.CrossRefPubMedGoogle Scholar
  4. Dimonte, G., Frerking, C.E., Schneider, M. and Remington, B.: 1996, Phys. Plasmas, 3, 614.CrossRefMathSciNetGoogle Scholar
  5. Erez, L., Sadot, O., Levin, L.A., Shvarts, D. and Ben-Dor, G.: 2000, Shock Waves J. 4. 241.CrossRefGoogle Scholar
  6. Hecht, J., Alon, U. and Shvarts, D.: 1994, Phys. Fluids 6, 4019.CrossRefGoogle Scholar
  7. Holmes, R.L., Dimonte, G., Fryxell, B., Gittings, M.L., Grove, J.W., Schneider, M., Sharp, D.H., Velikovich, A.L., Weaver, R.P. and Zhang, Q.: 1999, J. Fluid Mech. 389, 55.CrossRefMathSciNetGoogle Scholar
  8. Lindl, J.D.: 1995, Phys. Plasmas 2, 3933.CrossRefGoogle Scholar
  9. Levy, K., Sadot, O., Rikanati, A., Katroon, D., Srebro, Y., Yosef-Hai, A., Ben-Dor, G. and Shvarts, D.: 2004, L&PB. 21, 335.Google Scholar
  10. Meshkov, E.E.: 1969, Fluid Dyn. 4, 101.CrossRefGoogle Scholar
  11. Meyer, K.M. and Blewett, P.J.: 1972, Phys. Fluids 15, 753.CrossRefGoogle Scholar
  12. Richtmyer, R.D.: 1960, Comm. Pure Appl. Math. 13, 297.Google Scholar
  13. Rikanayi, A., Alon, U. and Shvarts, D.: 1998, Phys. Rev. E. 58(6), 7410.CrossRefGoogle Scholar
  14. Rikanati, A., Sadot, O., Oron, D. and Shvarts, D.: 2003, Phys. Rev. E. 67, 26307.CrossRefGoogle Scholar
  15. Sadot, O., Yosef-Hai, A., Rikanati, A., Kartoon, D., Oron, D., Arazi, L., Levin, L.A., Sarid, E., Ben-Dor, G. and Shvarts, D.: 2001, Proc. 24th ICHSP&P Conf., 798, Sendai, Japan.Google Scholar
  16. Sadot, O., Erez, L., Alon, U., Oron, D., Levin, L.A., Erez, G., Ben-Dor, G. and Shvarts, D.: 1998, Phys. Rev. Lett. 80, 1654.CrossRefGoogle Scholar
  17. Samtaney, R. and Zabusky, N.J.: 1994, J. Fluid Mech. 269, 45.Google Scholar
  18. Zhang, Q. and Sohn, S.-I.: 1997, Appl. Math.s Lett. 10, 121.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • O. Sadot
    • 1
    • 2
  • K. Levy
    • 1
    • 2
  • A. Yosef-Hai
    • 1
    • 2
  • D. Cartoon
    • 1
    • 2
  • Y. Elbaz
    • 2
  • Y. Srebro
    • 1
    • 2
  • G. Ben-Dor
    • 2
  • D. Shvarts
    • 1
    • 2
  1. 1.Physics Department, Nuclear Research Center NegevBEER-SHEVAIsrael
  2. 2.Ben-Gurion University of the Negev, BEER-SHEVAIsrael

Personalised recommendations