Astrophysics and Space Science

, Volume 300, Issue 1–3, pp 177–188 | Cite as

Low-Luminosity Accretion in Black Hole X-Ray Binaries and Active Galactic Nuclei

  • Ramesh NarayanEmail author


At luminosities below a few percent of Eddington, accreting black holes switch to a hard spectral state which is very different from the soft blackbody-like spectral state that is found at higher luminosities. The hard state is well-described by a two-temperature, optically thin, geometrically thick, advection-dominated accretion flow (ADAF) in which the ions are extremely hot (up to 1012 K near the black hole), the electrons are also hot (∼109−10.5 K), and thermal Comptonization dominates the X-ray emission. The radiative efficiency of an ADAF decreases rapidly with decreasing mass accretion rate, becoming extremely low when a source reaches quiescence. ADAFs are expected to have strong outflows, which may explain why relativistic jets are often inferred from the radio emission of these sources. It has been suggested that most of the X-ray emission also comes from a jet, but this is less well established.


accretion accretion disks active galactic nuclei black hole physics radiation mechanisms X-rays: binaries 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowicz, M.A., Chen, X., Kato, S., Lasota, J.-P. and Regev, O.: 1995, ApJ 438, L37.CrossRefADSGoogle Scholar
  2. Begelman, M.C. and Celotti, A.: 2004, MNRAS 352, L45.CrossRefADSGoogle Scholar
  3. Begelman, M.C. and Meier, D.L.: 1982, ApJ 253, 873.CrossRefADSGoogle Scholar
  4. Blandford, R.D. and Begelman, M.C.: 1999, MNRAS 303, L1.CrossRefADSGoogle Scholar
  5. Chiang, J. and Blaes, O.: 2003, ApJ 586, 97.CrossRefADSGoogle Scholar
  6. Corbel, S., Nowak, M.A., Fender, R.P., Tzioumis, A.K. and Markoff, S.: 2003, A&A 400, 1007.CrossRefADSGoogle Scholar
  7. di Matteo, T., Allen, S.W., Fabian, A.C., Wilson, A.S. and Young, A.J.: 2003, ApJ 582, 133.CrossRefADSGoogle Scholar
  8. Dullemond, C.P. and Turolla, R.: 1998, ApJ 503, 361.CrossRefADSGoogle Scholar
  9. Esin, A.A., McClintock, J.E., Drake, J.J., Garcia, M.R., Haswell, C.A., Hynes, R.I. and Muno, M.P.: 2001, ApJ 555, 483.CrossRefADSGoogle Scholar
  10. Esin, A.A., McClintock, J.E. and Narayan, R.: 1997, ApJ 489, 865.CrossRefADSGoogle Scholar
  11. Esin, A.A., Narayan, R., Cui, W., Grove, J.E. and Zhang, S.-N.: 1998, ApJ 505, 854.CrossRefADSGoogle Scholar
  12. Fabian, A.C. and Rees, M.J.: 1995, MNRAS 277, L5.ADSGoogle Scholar
  13. Falcke, H., Körding, E. and Markoff, S.: 2004, A&A 414, 895.CrossRefADSGoogle Scholar
  14. Falcke, H., Nagar, N.M., Wilson, A.S. and Ulvestad, J.S.: 2000, ApJ 542, 197.CrossRefADSGoogle Scholar
  15. Fender, R.P.: 2004, in: W.H.G. Lewin and M. van der Klis (eds.), Compact Stellar X-ray Sources, Cambridge University Press, New York, in press (astro-ph/0303339).Google Scholar
  16. Fender, R.P., Belloni, T.M. and Gallo, E.: 2004, MNRAS 355, 1105.CrossRefADSGoogle Scholar
  17. Gallo, E., Fender, R.P. and Pooley, G.G.: 2003, MNRAS 344, 60.CrossRefADSGoogle Scholar
  18. Haardt, F. and Maraschi, L.: 1991, ApJ 380, L51.CrossRefADSGoogle Scholar
  19. Hawley, J.F. and Balbus, S.A.: 2002, ApJ 573, 738.ADSGoogle Scholar
  20. Heinz, S.: 2004, MNRAS 355, 835.CrossRefADSGoogle Scholar
  21. Heinz, S. and Sunyaev, R.: 2003, MNRAS 343, L59.CrossRefADSGoogle Scholar
  22. Ho, L.C.: 1999, ApJ 516, 672.CrossRefADSGoogle Scholar
  23. Ichimaru, S.: 1977, ApJ 214, 840.CrossRefADSGoogle Scholar
  24. Igumenshchev, I.V. and Abramowicz, M.A.: 2000, ApJ 537, L27.CrossRefADSGoogle Scholar
  25. Igumenshchev, I.V., Narayan, R. and Abramowicz, M.A.: 2003, ApJ 592, 2042.CrossRefADSGoogle Scholar
  26. Kato, S., Fukue, J. and Mineshige, S.: 1998, Black Hole Accretion Disks, Kyoto University Press, Kyoto, Japan.Google Scholar
  27. Kato, S., Yamasaki, T., Abramowicz, M.A. and Chen, X.: 1997, PASJ 49, 221.ADSGoogle Scholar
  28. Koratkar, A. and Blaes, O.: 1999, PASP 111, 1.CrossRefADSGoogle Scholar
  29. Lasota, J.P., Abramowicz, M.A., Chen, X., Krolik, J., Narayan, R. and Yi, I.: 1996, ApJ 462, 142.CrossRefADSGoogle Scholar
  30. Liu, B.F., Yuan, F., Meyer, F., Meyer-Hofmeister, E. and Xie, G. Z.: 1999, ApJ 527, L17.CrossRefADSGoogle Scholar
  31. Maccarone, T.: 2003, A&A 409, 697.CrossRefADSGoogle Scholar
  32. Maccarone, T.J. and Coppi, P.S.: 2003, MNRAS 338, 189.CrossRefADSGoogle Scholar
  33. Malkan, M.A.: 1983, ApJ 268, 582.CrossRefADSGoogle Scholar
  34. Malzac, J., Merloni, A. and Fabian, A.C.: 2004, MNRAS 351, 253.CrossRefADSGoogle Scholar
  35. Maraschi, L. and Tavecchio, F.: 2003, ApJ 593, 667.CrossRefADSGoogle Scholar
  36. Markoff, S., Falcke, H. and Fender, R.P.: 2001, A&A 372, L25.CrossRefADSGoogle Scholar
  37. McClintock, J.E., Haswell, C.A., Garcia, M.R., Drake, J.J., Marshall, R.I. and Muno, H.L.: 2001, ApJ 555, 477.CrossRefADSGoogle Scholar
  38. McClintock, J.E. and Remillard, R.A.: 2004, in: W.H.G. Lewin and M. van der Klis (eds.), Compact Stellar X-ray Sources, Cambridge University Press, in press (astro-ph/0306213 v4).Google Scholar
  39. Meier, D.L.: 2001, ApJ 548, L9.CrossRefADSGoogle Scholar
  40. Merloni, A., Heinz, S. and Di Matteo, T.: 2003, MNRAS 345, 1057.CrossRefADSGoogle Scholar
  41. Meyer, F. and Meyer-Hofmeister, E.: 1994, A&A 361, 175.ADSGoogle Scholar
  42. Meyer-Hofmeister, E., Liu, B.F. and Meyer, F.: 2005, A&A 432, 181.CrossRefADSGoogle Scholar
  43. Miyamoto, S., Kitamoto, S., Hayashida, K. and Egoshi, W.: 1995, ApJ 442, L13.CrossRefADSGoogle Scholar
  44. Nagar, N.M., Falcke, H., Wilson, A.S. and Ho, L.C.: 2000, ApJ 542, 186.CrossRefADSGoogle Scholar
  45. Nakamura, K.E., Kusunose, M., Matsumoto, R. and Kato, S.: 1997, PASJ 49, 503.ADSGoogle Scholar
  46. Narayan, R.: 1996, ApJ 461, 136.ADSGoogle Scholar
  47. Narayan, R. 2002, in: M. Gilfanov and R. Sunyaev (eds.), Lighthouses of the Universe, Springer, Berlin.Google Scholar
  48. Narayan, R., Barret, D. and McClintock, J.E.: 1997, ApJ 482, 448.CrossRefADSGoogle Scholar
  49. Narayan, R., Igumenshchev, I.V. and Abramowicz, M.A.: 2000, ApJ 539, 798.CrossRefADSGoogle Scholar
  50. Narayan, R., Mahadevan, R. and Quataert, E.: 1998, in: M.A. Abramowicz, G. Bjornsson and J.E. Pringle (eds.), The Theory of Black Hole Accretion Discs, Cambridge University Press, New York, p. 148.Google Scholar
  51. Narayan, R. and McClintock, J.E.: 2005, ApJ 623, 1017.CrossRefADSGoogle Scholar
  52. Narayan, R., McClintock, J.E. and Yi, I.: 1996, ApJ 457, 821.CrossRefADSGoogle Scholar
  53. Narayan, R. and Yi, I.: 1994, ApJ 428, L13.CrossRefADSGoogle Scholar
  54. Narayan, R. and Yi, I.: 1995a, ApJ 444, 231.CrossRefADSGoogle Scholar
  55. Narayan, R. and Yi, I.: 1995b, ApJ 452, 710.CrossRefADSGoogle Scholar
  56. Narayan, R., Yi, I. and Mahadevan, R.: 1995, Nature 374, 623.CrossRefADSGoogle Scholar
  57. Novikov, I.D. and Thorne, K.S.: 1973, in: C. DeWitt and B. DeWitt (eds.), Blackholes, Gordon and Breach, New York, p. 343.Google Scholar
  58. Nowak, M.A., Wilms, J. and Dove, J.B.: 2002, MNRAS 332, 856.CrossRefADSGoogle Scholar
  59. Pringle, J.E.: 1976, MNRAS 177, 65.ADSGoogle Scholar
  60. Quataert, E.: 2001, in: B.M. Peterson, R.S. Polidan and R.W. Pogge (eds.), Probing the Physics of Active Galactic Nuclei by Multiwavelength Monitoring, Astronomical Society of the Pacific, San Francisco, p. 71.Google Scholar
  61. Quataert, E., di Matteo, T., Narayan, R. and Ho, L.C.: 1999, ApJ 525, L89.CrossRefADSGoogle Scholar
  62. Quataert, E. and Gruzinov, A.: 2000, ApJ 539, 809.CrossRefADSGoogle Scholar
  63. Quataert, E. and Narayan, R.: 1999, ApJ 520, 298.ADSGoogle Scholar
  64. Rees, M.J., Begelman, M.C., Blandford, R.D. and Phinney, E.S.: 1982, Nature 295, 17.CrossRefADSGoogle Scholar
  65. Reynolds, C.S., di Matteo, T., Fabian, A.C., Hwang, U. and Canizares, C.R.: 1996, MNRAS 283, L111.ADSGoogle Scholar
  66. Rozanska, A. and Czerny, B.: 2000, A&A 360, 1170.ADSGoogle Scholar
  67. Shakura, N.I. and Sunyaev, R.A.: 1973, A&A 24, 337.ADSGoogle Scholar
  68. Shapiro, S.L., Lightman, A.P. and Eardley, D.M.: 1976, ApJ 204, 187.ADSGoogle Scholar
  69. Spruit, H.C. and Deufel, B.: 2002, A&A 387, 918.CrossRefADSGoogle Scholar
  70. Stone, J.M. and Pringle, J.E.: 2001, MNRAS 322, 461.CrossRefADSGoogle Scholar
  71. Stone, J.M., Pringle, J.E. and Begelman, M.C.: 1999, MNRAS 310, 1002.CrossRefADSGoogle Scholar
  72. Tananbaum, H., Gursky, H., Kellogg, E., Giacconi, R. and Jones, C.: 1972, ApJ 177, L5.CrossRefADSGoogle Scholar
  73. Wu, X.B.: 1997, MNRAS 292, 113.ADSGoogle Scholar
  74. Yuan, F.: 2001, MNRAS 324, 119.CrossRefADSGoogle Scholar
  75. Yuan, F., Cui, W. and Narayan, R.: 2004, ApJ 620, 905.ADSGoogle Scholar
  76. Yuan, F. and Narayan, R.: 2004, ApJ 612, 724.CrossRefADSGoogle Scholar
  77. Yuan, F., Quataert, E. and Narayan, R.: 2003, ApJ 598, 301.CrossRefADSGoogle Scholar
  78. Yuan, F. and Zdziarski, A.A.: 2004, MNRAS 354, 953.CrossRefADSGoogle Scholar
  79. Zdziarski, A.A., Gierlinski, M., Mikolajewska, J., Wardzinski, G., Smith, D.M., Alan, H.B. and Kitamoto, S.: 2004, MNRAS 351, 791.CrossRefADSGoogle Scholar
  80. Zdziarski, A.A., Lubinski, P., Gilfanov, M. and Revnivtsev, M.: 2003, MNRAS 342, 355.CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Harvard-Smithsonian Center for AstrophysicsCambridgeU.S.A.

Personalised recommendations