Archives of Sexual Behavior

, Volume 41, Issue 1, pp 31–62 | Cite as

Who, What, Where, When (and Maybe Even Why)? How the Experience of Sexual Reward Connects Sexual Desire, Preference, and Performance

  • James G. PfausEmail author
  • Tod E. Kippin
  • Genaro A. Coria-Avila
  • Hélène Gelez
  • Veronica M. Afonso
  • Nafissa Ismail
  • Mayte Parada
Original Paper


Although sexual behavior is controlled by hormonal and neurochemical actions in the brain, sexual experience induces a degree of plasticity that allows animals to form instrumental and Pavlovian associations that predict sexual outcomes, thereby directing the strength of sexual responding. This review describes how experience with sexual reward strengthens the development of sexual behavior and induces sexually-conditioned place and partner preferences in rats. In both male and female rats, early sexual experience with partners scented with a neutral or even noxious odor induces a preference for scented partners in subsequent choice tests. Those preferences can also be induced by injections of morphine or oxytocin paired with a male rat’s first exposure to scented females, indicating that pharmacological activation of opioid or oxytocin receptors can “stand in” for the sexual reward-related neurochemical processes normally activated by sexual stimulation. Conversely, conditioned place or partner preferences can be blocked by the opioid receptor antagonist naloxone. A somatosensory cue (a rodent jacket) paired with sexual reward comes to elicit sexual arousal in male rats, such that paired rats with the jacket off show dramatic copulatory deficits. We propose that endogenous opioid activation forms the basis of sexual reward, which also sensitizes hypothalamic and mesolimbic dopamine systems in the presence of cues that predict sexual reward. Those systems act to focus attention on, and activate goal-directed behavior toward, reward-related stimuli. Thus, a critical period exists during an individual’s early sexual experience that creates a “love map” or Gestalt of features, movements, feelings, and interpersonal interactions associated with sexual reward.


Sexual reward Sexual preference Conditioning Critical periods Opioids Dopamine 



The research reported from our laboratory was funded by grants from the Canadian Institutes for Health Research (MOP-74563, MOP-111254), Natural Sciences and Engineering Research Council of Canada (OGP-138878), and by Fonds de recherche du Québec-Santé (FRQS Groupe de recherche) to the Center for Studies in Behavioral Neurobiology at Concordia University. All animal procedures conformed to the guidelines of the Canadian Council on Animal Care and were approved by the Concordia University Animal Research Ethics Committee. We would like to thank Drs. Anders Ågmo, J. Michael Bailey, Greg Ball, Jacques Balthazart, John Bancroft, Jill Becker, Ray Blanchard, Lori Brotto, James Cantor, Meredith Chivers, Lique Coolen, Michael Domjan, Mary Erskine, Barry Everitt, Helen Fisher, Janniko Georgiadis, Annamaria Geraldi, Irwin Goldstein, Fay Guarraci, Julia Heiman, Heather Hoffmann, Elaine Hull, Barry Komisaruk, Ellen Laan, Jorge Manzo, Peg McCarthy, Martha McClintock, John Money, Stephanie Ortigue, Raúl Parades, Michael Perelman, Don Pfaff, Alessandra Rellini, Gabriela Rodríguez-Manzo, Michael Sand, Michael Seto, Jane Stewart, Fred Toates, Paul Vasey, Larry Young, Kim Wallen, Roy Wise, Naomi Wolf, Barbara Woodside, and Ken Zucker for many useful discussions that have helped put our findings into perspective. The first author is indebted to Dr. W. Jake Jacobs for helping him translate a fuzzy idea of “post-orgasmic learning” into a set of testable hypotheses that eventually led to a major research thrust on learning and sexual reward funded by the Canadian Institutes for Health Research. A version of this article was presented at the University of Lethbridge Workshop, The Puzzle of Sexual Orientation: What Is It and How Does It Work?, Lethbridge, AB, Canada, June 2010.


  1. Afonso, V. M., Bablekis, V., & Pfaus, J. G. (2006). Sensory mediation of female–male mounting in the rat: II. Role of tactile and conspecific cues. Physiology & Behavior, 87, 863–869.CrossRefGoogle Scholar
  2. Afonso, V. M., Lehmann, H., Tse, M., Woehrling, A., & Pfaus, J. G. (2009). Estrogen and the neural mediation of female–male mounting in the rat. Behavioral Neuroscience, 123, 369–381.PubMedCrossRefGoogle Scholar
  3. Afonso, V. M., & Pfaus, J. G. (2006). Hormonal and experiential control of female–male mounting in the female rat. Hormones and Behavior, 49, 30–37.PubMedCrossRefGoogle Scholar
  4. Afonso, V. M., Woehrling, A., & Pfaus, J. G. (2006). Sensory mediation of female–male mounting in the rat: I. Role of olfactory cues. Physiology & Behavior, 87, 857–862.CrossRefGoogle Scholar
  5. Ågmo, A. (1999). Sexual motivation: An inquiry into events determining the occurrence of sexual behavior. Behavioural Brain Research, 105, 129–150.PubMedCrossRefGoogle Scholar
  6. Ågmo, A., & Berenfeld, R. (1990). Reinforcing properties of ejaculation in the male rat: The role of opioids and dopamine. Behavioral Neuroscience, 104, 177–182.PubMedCrossRefGoogle Scholar
  7. Ågmo, A., & Ellingsen, E. (2003). Relevance of nonhuman animal studies to the understanding of human sexuality. Scandinavian Journal of Psychology, 44, 293–301.PubMedCrossRefGoogle Scholar
  8. Ågmo, A., & Gomez, M. (1993). Sexual reinforcement in blocked by infusion of naloxone into the medial preoptic area. Behavioral Neuroscience, 107, 812–818.PubMedCrossRefGoogle Scholar
  9. Anderson, E. E. (1938). The interrelationship of drives in the male albino rat. Comparative Psychology Monographs, 14(6, Serial No. 72), 1–75.Google Scholar
  10. Aragona, B. J., Liu, Y., Yu, Y. J., Curtis, J. T., Detwiler, J. M., Insel, T. R., et al. (2006). Nucleus accumbens dopamine differentially mediates the formation and maintenance of monogamous pair bonds. Nature Neuroscience, 9, 133–139.PubMedCrossRefGoogle Scholar
  11. Aron, A., Fisher, H., Mashek, D. J., Li, H., & Brown, L. L. (2005). Reward, motivation, and emotion systems associated with early-stage romantic love. Journal of Neurophysiology, 94, 332–337.CrossRefGoogle Scholar
  12. Bagemihl, B. (1999). Biological exuberance: Animal homosexuality and natural diversity. New York: St. Martin’s Press.Google Scholar
  13. Bailey, J. M., & Zucker, K. J. (1995). Childhood sex-typed behavior and sexual orientation: A conceptual analysis and quantitative review. Developmental Psychology, 31, 43–55.CrossRefGoogle Scholar
  14. Bale, T. L. (2011). Sex differences in prenatal epigenetic programming of sex differences. Stress, 14, 348–356.PubMedGoogle Scholar
  15. Balthazart, J., Reid, J., Absil, P., Foidart, A., & Ball, G. F. (1995). Appetitive as well as consummatory aspects of male sexual behavior in quail are activated by androgens and estrogens. Behavioral Neuroscience, 109, 485–501.PubMedCrossRefGoogle Scholar
  16. Bancroft, J. (2009). Human sexuality and its problems (3rd ed.). London: Elsevier.Google Scholar
  17. Bancroft, J., & Janssen, E. (2000). The dual control model of male sexual response: A theoretical approach to centrally mediated erectile dysfunction. Neuroscience and Biobehavioral Reviews, 24, 571–579.PubMedCrossRefGoogle Scholar
  18. Barfield, R. J., & Sachs, B. (1968). Sexual behavior: Stimulation by painful electrical shock to the skin in male rats. Science, 161, 392–395.PubMedCrossRefGoogle Scholar
  19. Basson, R. (2001). Are the complexities of women’s sexual function reflected in the new consensus definitions of dysfunction? Journal of Sex and Marital Therapy, 27, 105–112.PubMedCrossRefGoogle Scholar
  20. Bateson, P. (1983). Optimal outbreeding. In P. Bateson (Ed.), Mate choice (pp. 257–277). Cambridge: Cambridge University Press.Google Scholar
  21. Beach, F. A. (1950). Sexual behavior in animals and man. The Harvey Lectures, 43, 259–279.Google Scholar
  22. Beach, F. A. (1956). Characteristics of masculine “sex drive”. Nebraska Symposium on Motivation, 4, 1–32.Google Scholar
  23. Beach, F. A. (1968). Factors involved in the control of mounting behavior by female mammals. In M. Diamond (Ed.), Perspectives in reproduction and sexual behavior: A memorial to William C. Young (pp. 83–131). Bloomington: Indiana University Press.Google Scholar
  24. Beach, F. A. (1976). Sexual attractivity, proceptivity, and receptivity in female mammals. Hormones and Behavior, 7, 105–138.PubMedCrossRefGoogle Scholar
  25. Beach, F. A., & Fowler, H. (1959). Effects of situational anxiety on sexual behavior in male rats. Journal of Comparative and Physiological Psychology, 52, 245–248.PubMedCrossRefGoogle Scholar
  26. Beach, F. A., & Jordan, L. (1956). Effects of sexual reinforcement upon the performance of male rats in a straight runway. Journal of Comparative and Physiological Psychology, 49, 105–110.PubMedCrossRefGoogle Scholar
  27. Beck, J. (1971). Instrumental conditioned reflexes with sexual reinforcement in rats. Acta Neurobiologia Experientia, 31, 251–262.Google Scholar
  28. Beck, J. (1974). Contact with male or female conspecifics as a reward for instrumental responses in estrus and anestrus female rats. Acta Neurobiologia Experientia, 34, 615–620.Google Scholar
  29. Beck, J. (1978). A positive correlation between male and female response latencies in the mutually reinforced instrumental sexual responses in rats. Acta Neurobiologia Experientia, 38, 153–156.Google Scholar
  30. Beck, J., & Chmielewska, J. (1976). Contact with estrous female as a reward for instrumental response in a growing male rat from the 3rd up to the 14th week of life. Acta Neurobiologia Experientia, 36, 535–543.Google Scholar
  31. Bem, D. J. (1996). Exotic becomes erotic: A developmental theory of sexual orientation. Psychological Review, 103, 320–335.CrossRefGoogle Scholar
  32. Bem, D. J. (2000). Exotic becomes erotic: Interpreting the biological correlates of sexual orientation. Archives of Sexual Behavior, 29, 531–548.PubMedCrossRefGoogle Scholar
  33. Berridge, K. C. (2009). ‘Liking’ and ‘wanting’ food rewards: Brain substrates and roles in eating disorders. Physiology & Behavior, 97, 537–550.CrossRefGoogle Scholar
  34. Biały, M., & Kaczmarek, L. (1996). c-Fos expression as a tool to search for the neurobiological base of the sexual behaviour of males. Acta Neurobiologia Experientia, 56, 567–577.Google Scholar
  35. Bindra, D. (1968). Neuropsychological interpretation of the effects of drive and incentive motivation on general activity and instrumental behavior. Psychological Review, 75, 1–22.CrossRefGoogle Scholar
  36. Bindra, D. (1974). A motivational view of learning, performance, and behavior modification. Psychological Review, 81, 199–213.PubMedCrossRefGoogle Scholar
  37. Blackburn, J. R., Pfaus, J. G., & Phillips, A. G. (1992). Dopamine functions in appetitive and defensive behaviours. Progress in Neurobiology, 39, 247–279.PubMedCrossRefGoogle Scholar
  38. Blanchard, R. (2007). Older-sibling and younger-sibling sex ratios in Frisch and Hviid’s (2006) National Cohort Study of two million Danes. Archives of Sexual Behavior, 36, 860–863.PubMedCrossRefGoogle Scholar
  39. Blanchard, R., & Lippa, R. A. (2007). Birth order, sibling ratio, handedness and sexual orientation of male and female participants in a BBC internet research project. Archives of Sexual Behavior, 36, 163–176.PubMedCrossRefGoogle Scholar
  40. Bobrow, D., & Bailey, J. M. (2001). Is male homosexuality maintained by kin selection? Evolution and Human Behavior, 22, 361–368.CrossRefGoogle Scholar
  41. Bogaert, A. F., & Skorska, M. (2011). Sexual orientation, fraternal birth order, and the maternal immune hypothesis: A review. Frontiers in Neuroendocrinology, 32, 247–254.PubMedCrossRefGoogle Scholar
  42. Bolhuis, J. J. (1999). The development of animal behavior: From Lorenz to neural nets. Naturwiessenschaften, 86, 101–111.CrossRefGoogle Scholar
  43. Bolivar-Duarte, L. M., Silva, M., Manzo, J., & Pfaus, J. G. (2012). Fluctuations of GAD65 mRNA in the cerebellum of male rats during the acquisition of sexual experience. (Manuscript in preparation).Google Scholar
  44. Bolles, R. C. (1972). Reinforcement, expectancy, and learning. Psychological Review, 79, 394–409.CrossRefGoogle Scholar
  45. Bonthuis, P. J., Cox, K. H., Searcy, B. T., Kumar, P., Tobet, S., & Rissman, E. F. (2010). Of mice and rats: Key species variations in the sexual differentiation of brain and behavior. Frontiers in Neuroendocrinology, 31, 341–358.PubMedCrossRefGoogle Scholar
  46. Both, S., Laan, E., Spiering, M., Nilsson, T., Oomens, S., & Everaerd, W. (2008). Appetitive and aversive classical conditioning of female sexual response. Journal of Sexual Medicine, 5, 1386–1401.PubMedCrossRefGoogle Scholar
  47. Both, S., Spiering, M., Laan, E., Belcome, S., van den Heuvel, B., & Everaerd, W. (2008). Unconscious classical conditioning of sexual arousal: Evidence for the conditioning of female genital arousal to subliminally presented sexual stimuli. Journal of Sexual Medicine, 5, 100–109.PubMedCrossRefGoogle Scholar
  48. Bradley, K. C., & Meisel, R. L. (2001). Sexual behavior induction of c-Fos in the nucleus accumbens and amphetamine-stimulated locomotor activity are sensitized by previous sexual experience in female Syrian hamsters. Journal of Neuroscience, 21, 2123–2130.PubMedGoogle Scholar
  49. Brennan, P. A., Kaba, H., & Keverne, E. B. (1990). Olfactory recognition: A simple memory system. Science, 250, 1223–1226.PubMedCrossRefGoogle Scholar
  50. Brennan, P. A., & Keverne, E. B. (1997). Neural mechanisms of mammalian olfactory learning. Progress in Neurobiology, 51, 457–481.PubMedCrossRefGoogle Scholar
  51. Buss, D. M. (1994). The evolution of desire. New York: Basic Books.Google Scholar
  52. Caggiula, A. R. (1972). Shock-elicited copulation and aggression in male rats. Journal of Comparative and Physiological Psychology, 80, 393–397.PubMedCrossRefGoogle Scholar
  53. Cantor, J. M., Blanchard, R., Bobichaud, L. K., & Christensen, B. K. (2005). Quantitative analysis of aggregate data on IQ in sexual offenders. Psychological Bulletin, 131, 555–568.PubMedCrossRefGoogle Scholar
  54. Cantor, J. M., Kabani, N., Christensen, B. K., Zipursky, R. B., Barbaree, H. E., Dickey, R., et al. (2008). Cerebral white matter deficiencies in pedophilic men. Journal of Psychiatric Research, 42, 167–183.PubMedCrossRefGoogle Scholar
  55. Cantor, J. M., Klassen, P. E., Dickey, R., Christensen, B. K., Kuban, M. E., Blak, T., et al. (2005). Handedness in pedophilia and hebephilia. Archives of Sexual Behavior, 34, 447–459.PubMedCrossRefGoogle Scholar
  56. Carr, W. J., Loeb, L. S., & Dissinger, M. L. (1965). Responses of rats to sex odors. Journal of Comparative and Physiological Psychology, 59, 370–377.PubMedCrossRefGoogle Scholar
  57. Carr, W. J., Loeb, L. S., & Wylie, N. R. (1966). Responses to feminine odors in normal and castrated male rats. Journal of Comparative and Physiological Psychology, 62, 336–338.PubMedCrossRefGoogle Scholar
  58. Castagna, C., Ball, G. F., & Balthazart, J. (1997). Effects of dopamine agonists on appetitive and consummatory male sexual behavior in Japanese quail. Pharmacology, Biochemistry and Behavior, 58, 403–414.CrossRefGoogle Scholar
  59. Cerny, J. (1978). Biofeedback and the voluntary control of sexual arousal in women. Behavior Therapy, 9, 847–855.CrossRefGoogle Scholar
  60. Chessick, R. D. (1960). The “pharmacogenic orgasm” in the drug addict. Archives of General Psychiatry, 3, 545–556.PubMedCrossRefGoogle Scholar
  61. Childress, A. R., Ehrman, R. N., Wang, Z., Li, Y., Sciortino, N., Hakun, J., et al. (2008). Prelude to passion: Limbic activation by “unseen” drug and sexual cues. PLoS ONE, 3, e1506.PubMedCrossRefGoogle Scholar
  62. Chivers, M. L., & Rosen, R. C. (2010). Phosphodiesterase type 5 inhibitors and female sexual response: Faulty protocols or paradigms? Journal of Sexual Medicine, 7, 858–872.PubMedCrossRefGoogle Scholar
  63. Cibrian-Llanderal, T., Tecamachaltzi-Silvarán, M., Triana-Del Rio, R., Pfaus, J. G., Manzo, J., & Coria-Avila, G. A. (2010). Clitoral stimulation modulates appetitive sexual behavior and facilitates reproduction in rats. Physiology & Behavior, 100, 148–153.CrossRefGoogle Scholar
  64. Clark, A. S., Davis, L. A., & Roy, E. J. (1985). A possible physiological basis for the dud–stud phenomenon. Hormones and Behavior, 19, 227–230.PubMedCrossRefGoogle Scholar
  65. Collaer, M. L., Reimers, S., & Manning, J. T. (2007). Visuospatial performance on an internet line judgment task and potential hormone markers: Sex, sexual orientation, and 2D:4D. Archives of Sexual Behavior, 36, 177–192.PubMedCrossRefGoogle Scholar
  66. Cooke, F., Finney, G. H., & Rockwell, R. F. (1976). Assortative mating in lesser snowgeese (Anser caerulescens). Behavior Genetics, 6, 127–139.PubMedCrossRefGoogle Scholar
  67. Cooke, F., & McNally, C. M. (1975). Mate selection and colour preferences in lesser snow geese. Behaviour, 2, 191–200.Google Scholar
  68. Cooke, F., Mirsky, P. J., & Seiger, M. B. (1972). Colour preferences in the lesser snow geese and their possible role in mate selection. Canadian Journal of Zoology, 50, 529–536.PubMedCrossRefGoogle Scholar
  69. Coria-Avila, G. A., Jones, S. L., Solomon, C. E., Gavrila, A. M., Jordon, G. L., & Pfaus, J. G. (2006). Conditioned partner preference in female rats for strain of male. Physiology & Behavior, 88, 529–537.CrossRefGoogle Scholar
  70. Coria-Avila, G. A., Ouimet, A. J., Pacheco, P., Manzo, J., & Pfaus, J. G. (2005). Olfactory conditioned partner preference in the female rat. Behavioral Neuroscience, 119, 716–725.PubMedCrossRefGoogle Scholar
  71. Coria-Avila, G. A., & Pfaus, J. G. (2007). Neuronal activation by stimuli that predict sexual reward in female rats. Neuroscience, 148, 623–632.PubMedCrossRefGoogle Scholar
  72. Coria-Avila, G. A., Solomon, C. E., Barbosa Vargas, E., Lemme, I., Ryan, R., Ménard, S., et al. (2008). Neurochemical basis of conditioned partner preference in the female rat: I. Disruption by naloxone. Behavioral Neuroscience, 122, 385–395.PubMedCrossRefGoogle Scholar
  73. Corona, R., Larriva-Sahd, J., & Parades, R. G. (2011). Paced mating increases the number of adult new born cells in the internal cellular (granular) layer of the accessory olfactory bulb. PLoS ONE, 6, e19380.PubMedCrossRefGoogle Scholar
  74. Crowley, W. R., Popolow, H. B., & Ward, O. B. (1973). From dud to stud: Copulatory behavior elicited through conditioned arousal in sexually inactive male rats. Physiology & Behavior, 10, 391–394.CrossRefGoogle Scholar
  75. Cutmore, T. R., & Zamble, E. (1988). A Pavlovian procedure for improving sexual performance of noncopulating male rats. Archives of Sexual Behavior, 17, 371–380.PubMedCrossRefGoogle Scholar
  76. Damsma, G., Pfaus, J. G., Wenkstern, D., Phillips, A. G., & Fibiger, H. C. (1992). Sexual behavior increases dopamine transmission in the nucleus accumbens and striatum of male rats: Comparison with novelty and locomotion. Behavioral Neuroscience, 106, 181–191.PubMedCrossRefGoogle Scholar
  77. Darwin, C. (1859). The origin of species. London: A.L. Burt Co.Google Scholar
  78. Demetriou, A. (1998). Cognitive development. In A. Demetriou, W. Doise, & K. F. M. van Lieshout (Eds.), Life-span developmental psychology (pp. 179–269). London: Wiley.Google Scholar
  79. Domjan, M., & Hall, S. (1986). Determinants of social proximity in Japanese quail (Coturnix coturnix japonica): Male behavior. Journal of Comparative Psychology, 100, 59–67.PubMedCrossRefGoogle Scholar
  80. Domjan, M., O’Vary, D., & Greene, P. (1988). Conditioning of appetitive and consummatory sexual behavior in male Japanese quail. Journal of the Experimental Analysis of Behavior, 50, 505–519.PubMedCrossRefGoogle Scholar
  81. Drewett, R. F. (1973). Sexual behaviour and sexual motivation in the female rat. Nature, 242, 476–477.PubMedCrossRefGoogle Scholar
  82. Drori, D., & Folman, Y. (1964). Effects of cohabitation on the reproductive system: Kidneys and body composition of male rats. Journal of Reproduction and Fertility, 8, 351–359.PubMedCrossRefGoogle Scholar
  83. Eliasson, M., & Meyerson, B. J. (1975). Sexual preference in female rats during estrous cycle, pregnancy and lactation. Physiology & Behavior, 14, 705–710.CrossRefGoogle Scholar
  84. Erskine, M. S. (1985). Effects of paced coital stimulation on estrus duration in intact cycling rats and in ovariectomized and ovariectomized-adrenalectomized hormone-primed rats. Behavioral Neuroscience, 99, 151–161.PubMedCrossRefGoogle Scholar
  85. Erskine, M. S. (1989). Solicitation behavior in the estrous female rat: A review. Hormones and Behavior, 23, 473–502.PubMedCrossRefGoogle Scholar
  86. Erskine, M. S. (2005). Learning about sex: Conditioning of partner preference: Theoretical comment on Coria-Avila et al. (2005). Behavioral Neuroscience, 119, 1136–1139.PubMedCrossRefGoogle Scholar
  87. Everitt, B. J. (1990). Sexual motivation: A neural and behavioral analysis of the mechanisms underlying appetitive and copulatory responses of male rats. Neuroscience and Biobehavioral Reviews, 14, 217–232.PubMedCrossRefGoogle Scholar
  88. Everitt, B. J., Fray, P., Kostarczyk, E., Taylor, S., & Stacey, P. (1987). Studies of instrumental behavior with sexual reinforcement in male rats (Rattus norvegicus): I. Control by brief visual stimuli paired with a receptive female. Journal of Comparative Psychology, 101, 395–406.PubMedCrossRefGoogle Scholar
  89. Everitt, B. J., & Stacey, P. (1987). Studies of instrumental behavior with sexual reinforcement in male rats (Rattus norvegicus): II. Effects of preoptic area lesions, castration, and testosterone. Journal of Comparative Psychology, 101, 407–419.PubMedCrossRefGoogle Scholar
  90. Fisher, H. (2000). Lust, attraction, attachment: Biology and evolution of the three primary emotion systems for mating, reproduction, and parenting. Journal of Sex Education and Therapy, 25, 96–104.Google Scholar
  91. Fisher, H. E., Aron, A., Mashek, D., Li, H., & Brown, L. L. (2002). Defining the brain systems of lust, romantic attraction, and attachment. Archives of Sexual Behavior, 31, 413–419.PubMedCrossRefGoogle Scholar
  92. Fishman, J., Roffwarg, H., & Hellman, L. (1973). Disposition of naloxone-7,8,3H in normal and narcotic-dependent men. Journal of Pharmacology and Experimental Therapeutics, 187, 575–580.PubMedGoogle Scholar
  93. Flagel, S. B., Robinson, T. E., Clark, J. J., Clinton, S. M., Watson, S. J., Seeman, P., et al. (2010). An animal model of genetic vulnerability to behavioral disinhibition and responsiveness to reward-related cues: Implications for addiction. Neuropsychopharmacology, 35, 388–400.PubMedCrossRefGoogle Scholar
  94. French, D., Fitzpatrick, D., & Law, O. T. (1972). Operant investigation of mating preference in female rats. Journal of Comparative and Physiological Psychology, 81, 226–232.PubMedCrossRefGoogle Scholar
  95. Furuichi, T. (2011). Female contributions to the peaceful nature of bonobo society. Evolutionary Anthropology, 20, 131–142.PubMedCrossRefGoogle Scholar
  96. Gabor, M. (1973). The pin-up. New York: Universe Books.Google Scholar
  97. Gallistel, C. R. (1980). The organization of action: A new synthesis. Hillsdale, NJ: Erlbaum.Google Scholar
  98. Garavan, H., Pankiewicz, J., Bloom, A., Cho, J. K., Sperry, L., Ross, T. J., et al. (2000). Cue-induced cocaine craving: Neuroanatomical specificity for drug users and drug stimuli. American Journal of Psychiatry, 157, 17879–17980.CrossRefGoogle Scholar
  99. Garcia-Horsman, S. P., Ågmo, A., & Paredes, R. G. (2008). Infusions of naloxone into the medial preoptic area, ventromedial hypothalamus, and amygdala block conditioned place preference induced by paced mating behavior. Hormones and Behavior, 54, 709–716.PubMedCrossRefGoogle Scholar
  100. Garcia-Horsman, S. P., & Paredes, R. G. (2004). Dopamine antagonists do not block conditioned place preference induced by paced mating behavior in female rats. Behavioral Neuroscience, 118, 356–364.PubMedCrossRefGoogle Scholar
  101. Ghiselin, M. T. (1973). Darwin and evolutionary psychology: Darwin initiated a radically new way of studying behavior. Science, 179, 964–968.PubMedCrossRefGoogle Scholar
  102. Gilbertson, D. W. (1975). Courtship as a reinforcement for key pecking in the pigeon, Columbia livia. Animal Behaviour, 23, 735–744.CrossRefGoogle Scholar
  103. Gizewski, E. R., Krause, E., Karama, S., Baars, A., Senf, W., & Forsting, M. (2006). There are differences in cerebral activation between females in distinct menstrual phases during viewing of erotic stimuli: A fMRI study. Experimental Brain Research, 174, 101–108.CrossRefGoogle Scholar
  104. Goy, R. W. (1978). Sexual compatibility in rhesus monkeys: Predicting sexual behavior of oppositely sexed pairs of adults. Ciba Foundation Symposium, 62, 227–255.PubMedGoogle Scholar
  105. Graham, J. M., & Desjardins, C. (1980). Classical conditioning: Induction of luteinizing hormone and testosterone secretion in anticipation of sexual activity. Science, 210, 1039–1041.PubMedCrossRefGoogle Scholar
  106. Gray, G. D., Smith, E. R., Dorsa, D. M., & Davidson, J. M. (1981). Sexual behavior and testosterone in middle-aged male rats. Endocrinology, 109, 1597–1604.PubMedCrossRefGoogle Scholar
  107. Hamer, D. H., Hu, S., Magnuson, V. L., Hu, N., & Pattatucci, A. M. L. (1993). A linkage between DNA markers on the X chromosome and male sexual orientation. Science, 261, 321–327.PubMedCrossRefGoogle Scholar
  108. Harris, J. A. (2011). The acquisition of conditioned responding. Journal of Experimental Psychology: Animal Behavioral Processes, 37, 151–164.CrossRefGoogle Scholar
  109. Hebb, D. O. (1949). The organization of behavior. New York: Wiley.Google Scholar
  110. Herdt, G., & McClintock, M. (2000). The magical age of 10. Archives of Sexual Behavior, 29, 587–606.PubMedCrossRefGoogle Scholar
  111. Herz, A., Folman, Y., & Drori, D. (1969). The testosterone content of the testes of mated and unmated rats. Journal of Endocrinology, 44, 127–128.PubMedCrossRefGoogle Scholar
  112. Hetta, J., & Meyerson, B. J. (1978). Sexual motivation in the male rat. Acta Physiologica Scandanavia (Suppl.), 453, 1–67.Google Scholar
  113. Hoffmann, H. L. (2012). Considering the role of conditioning in sexual orientation. Archives of Sexual Behavior. doi: 10.1007/s10508-012-9915-9.
  114. Hoffmann, H., Janssen, E., & Turner, S. L. (2004). Classical conditioning of sexual arousal in women and men: Effects of varying awareness and biological relevance of the conditioned stimulus. Archives of Sexual Behavior, 33, 43–53.PubMedCrossRefGoogle Scholar
  115. Hohmann, G., & Fruth, B. (2000). Use and function of genital contacts among female bonobos. Animal Behaviour, 60, 107–120.PubMedCrossRefGoogle Scholar
  116. Hollis, K. L., Cadieux, E. L., & Colbert, M. M. (1989). The biological function of Pavlovian conditioning: A mechanism for mating success in the blue gourami. Journal of Comparative Psychology, 103, 115–121.CrossRefGoogle Scholar
  117. Hoon, P. W. (1984). Physiologic assessment of sexual response in women: The unfulfilled promise. Clinical Obstetrics and Gynecology, 27, 767–780.PubMedCrossRefGoogle Scholar
  118. Hughes, A. M., Everitt, B. J., & Herbert, J. (1990). Comparative effects of preoptic area infusions of opioid peptides, lesions and castration on sexual behaviour in male rats: Studies of instrumental behaviour, conditioned place preference and partner preference. Psychopharmacology, 102, 243–256.PubMedCrossRefGoogle Scholar
  119. Hull, C. L. (1943). Principles of behavior. New York: Appleton-Century-Crofts.Google Scholar
  120. Hull, E. M., & Dominguez, J. M. (2007). Sexual behavior in male rodents. Hormones and Behavior, 52, 45–55.PubMedCrossRefGoogle Scholar
  121. Insel, T. R., Winslow, J. T., Wang, Z. X., Young, L., & Hulihan, T. J. (1995). Oxytocin and the molecular basis of monogamy. Advances in Experimental Medical Biology, 395, 227–234.Google Scholar
  122. Ismail, N., Gelez, H., Lachapelle, I., & Pfaus, J. G. (2009). Pacing conditions contribute to the conditioned ejaculatory preference for a familiar female in the male rat. Physiology & Behavior, 96, 201–208.CrossRefGoogle Scholar
  123. Ismail, N., Girard-Bériault, F., Nakanishi, S., & Pfaus, J. G. (2009). Naloxone, but not flupenthixol, disrupts the development of conditioned ejaculatory preference in the male rat. Behavioral Neuroscience, 123, 992–999.PubMedCrossRefGoogle Scholar
  124. Ismail, N., Jones, S. L., Graham, M. D., Sylvester, S., & Pfaus, J. G. (2011). Partner preference for strain of female in Long-Evans male rats. Physiology & Behavior, 102, 285–290.CrossRefGoogle Scholar
  125. Ismail, N., Zhao, Y., & Pfaus, J. G. (2008). Context-dependent acquisition of copulatory behavior in the male rat: Role of female availability. Behavioral Neuroscience, 122, 991–997.PubMedCrossRefGoogle Scholar
  126. Izquierdo, I., & McGaugh, J. L. (1987). Effect of novel experiences on retention of inhibitory avoidance behavior in mice: The influence of previous exposure to the same or another experience. Behavioral and Neural Biology, 47, 109–115.PubMedCrossRefGoogle Scholar
  127. Jacobs, W. J., & Nadel, L. (1985). Stress-induced recovery of fears and phobias. Psychological Review, 92, 512–531.PubMedCrossRefGoogle Scholar
  128. Jenkins, M. (1928). The effect of segregation on the sex behavior of the white rat as measured by the obstruction box method. Genetic Psychology Monographs, 3, 455–471.Google Scholar
  129. Jenkins, W. J., & Becker, J. B. (2003). Female rats develop conditioned place preference for sex at their preferred interval. Hormones and Behavior, 43, 503–507.PubMedCrossRefGoogle Scholar
  130. Johansson, T., & Ritzén, E. M. (2005). Very long-term follow-up of girls with early and late menarche. Endocrine Development, 8, 126–136.PubMedCrossRefGoogle Scholar
  131. Johnson, L. R., LeDoux, J. E., & Doyère, V. (2009). Hebbian reverberations in emotional memory micro circuits. Frontiers in Neuroscience, 3, 198–205.PubMedCrossRefGoogle Scholar
  132. Jowaisas, D., Taylor, J., Dewsbury, D. A., & Malagodi, E. F. (1971). Copulatory behavior of male rats under an imposed operant requirement. Psychonomic Science, 25, 287–290.Google Scholar
  133. Kagan, J. (1955). Differential reward value of incomplete and complete sexual behavior. Journal of Comparative and Physiological Psychology, 48, 59–64.PubMedCrossRefGoogle Scholar
  134. Kagan, J. (1994). On the nature of emotion. Monographs of the Society for Research in Child Development, 59, 7–24.PubMedCrossRefGoogle Scholar
  135. Kalivas, P. W., & Stewart, J. (1991). Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Research–Brain Research Reviews, 16, 223–244.PubMedCrossRefGoogle Scholar
  136. Kamel, F., Mock, E. J., Wright, W. W., & Frankel, A. I. (1975). Alterations in plasma concentrations of testosterone, LH, and prolactin associated with mating in the male rat. Hormones and Behavior, 6, 277–288.PubMedCrossRefGoogle Scholar
  137. Kandel, E. R. (2001). The molecular biology of memory storage: A dialogue between genes and synapses. Science, 294, 1030–1038.PubMedCrossRefGoogle Scholar
  138. Kantorowitz, D. A. (1978). An experimental investigation of preorgasmic reconditioning and postorgasmic deconditioning. Journal of Applied Behavioral Analysis, 11, 23–34.CrossRefGoogle Scholar
  139. Karama, S., Lecours, A. R., Leroux, J. M., Bourgouin, P., Beaudoin, G., Joubert, S., et al. (2002). Areas of brain activation in males and females during viewing of erotic film excepts. Human Brain Mapping, 16, 1–13.PubMedCrossRefGoogle Scholar
  140. Kendrick, K. M., Hinton, M. R., Atkins, K., Haupt, M. A., & Skinner, J. D. (1998). Mothers determine sexual preferences. Nature, 395, 229–230.PubMedCrossRefGoogle Scholar
  141. Kinsey, A. C., Pomeroy, W. B., & Martin, C. E. (1948). Sexual behavior in the human male. Philadelphia: W. B. Saunders.Google Scholar
  142. Kinsey, A. C., Pomeroy, W. B., Martin, C. E., & Gebhard, P. H. (1953). Sexual behavior in the human female. Philadelphia: W.B. Saunders.Google Scholar
  143. Kippin, T. E., Cain, S. W., & Pfaus, J. G. (2003). Estrous odors and sexually conditioned neutral odors activate separate neural pathways in the male rat. Neuroscience, 117, 971–979.PubMedCrossRefGoogle Scholar
  144. Kippin, T. E., & Pfaus, J. G. (2001a). The development of olfactory conditioned ejaculatory preferences in the male rat: I. Nature of the unconditioned stimulus. Physiology & Behavior, 73, 457–469.CrossRefGoogle Scholar
  145. Kippin, T. E., & Pfaus, J. G. (2001b). The nature of the conditioned response mediating olfactory conditioned ejaculatory preference in the male rat. Behavioural Brain Research, 122, 11–24.PubMedCrossRefGoogle Scholar
  146. Kippin, T. E., Samaha, A.-N., Sotiropoulos, V., & Pfaus, J. G. (2001). The development of olfactory conditioned ejaculatory preferences in the male rat: II. Parametric manipulation of conditioning session number and duration. Physiology & Behavior, 73, 471–485.CrossRefGoogle Scholar
  147. Kippin, T. E., Talianakis, S., Schattmann, L., Bartholomew, S., & Pfaus, J. G. (1998). Olfactory conditioning of sexual behavior in the male rat (Rattus norvegicus). Journal of Comparative Psychology, 112, 389–399.CrossRefGoogle Scholar
  148. Köhler, W. (1929). Gestalt psychology. New York: Liveright Publishing.Google Scholar
  149. Krafft-Ebing, R. v. (1929). Psychopathia sexualis. New York: Physicians and Surgeons Book Co. (Original work published 1886)Google Scholar
  150. Krug, R., Pihal, W., Fehm, H. L., & Born, J. (2000). Selective influence of the menstrual cycle on perception of stimuli with reproductive significance: An event-related potential study. Psychophysiology, 37, 111–122.PubMedCrossRefGoogle Scholar
  151. Lalumière, M. L., & Quinsey, V. L. (1998). Pavlovian conditioning of sexual interests in human males. Archives of Sexual Behavior, 27, 241–252.PubMedCrossRefGoogle Scholar
  152. Lam, V., Guerrero, S., Damree, N., & Enesco, I. (2011). Young children’s racial awareness and affect and their perceptions about mothers’ racial affect in a multiracial context. British Journal of Developmental Psychology, 29, 842–864.PubMedCrossRefGoogle Scholar
  153. Larsson, K. (1956). Conditioning and sexual behaviour in the male albino rat. Stockholm: Almqvist.Google Scholar
  154. Lashley, K. S. (1951). The problem of serial order in behavior. In L. A. Jeffress (Ed.), Cerebral mechanisms in behavior (pp. 112–131). New York: Wiley.Google Scholar
  155. Lenz, K. M., & McCarthy, M. M. (2010). Organized for sex-steroid hormones and the developing hypothalamus. European Journal of Neuroscience, 32, 2096–2104.PubMedCrossRefGoogle Scholar
  156. Letourneau, E. J., & O’Donohue, W. (1997). Classical conditioning of female sexual arousal. Archives of Sexual Behavior, 26, 63–78.PubMedCrossRefGoogle Scholar
  157. LeVay, S. (1991). A difference in hypothalamic structure between heterosexual and homosexual men. Science, 253, 1034–1037.PubMedCrossRefGoogle Scholar
  158. Lim, M. M., Hammock, E. A., & Young, L. J. (2004). The role of vasopressin in the genetic and neural regulation of monogamy. Journal of Neuroendocrinology, 16, 325–332.PubMedCrossRefGoogle Scholar
  159. Lim, M. M., Wang, Z., Olazábal, D. E., Ren, X., Terwilliger, E. F., & Young, L. J. (2004). Enhanced partner preference in a promiscuous species by manipulating the expression of a single gene. Nature, 429, 754–757.PubMedCrossRefGoogle Scholar
  160. Lim, M. M., & Young, L. J. (2004). Vasopressin-dependent neural circuits underlying pair-bond formation in the monogamous prairie vole. Neuroscience, 125, 35–45.PubMedCrossRefGoogle Scholar
  161. Lisk, R. D., & Heimann, J. (1980). The effects of sexual experience and frequency of testing on retention of copulatory behavior following castration in the male hamster. Behavioral and Neural Biology, 28, 156–171.PubMedCrossRefGoogle Scholar
  162. Lodder, J. (1975). Penile deafferentation and the effect of mating experience on sexual motivation in adult male rats. Physiology & Behavior, 17, 571–573.CrossRefGoogle Scholar
  163. López, H. H., & Ettenberg, A. (2002). Exposure to female rats produces differences in c-fos induction between sexually-naïve and experienced male rats. Brain Research, 947, 57–66.PubMedCrossRefGoogle Scholar
  164. López, H. H., Olster, D. H., & Ettenberg, A. (1999). Sexual motivation in the male rat: The role of primary incentives and copulatory experience. Hormones and Behavior, 36, 176–185.PubMedCrossRefGoogle Scholar
  165. MacDougall-Shackelton, S. A. (2009). The importance of development: What songbirds can teach us. Canadian Journal of Experimental Psychology, 63, 74–79.Google Scholar
  166. Manzo, J., Miquel, M., Toledo, R., Mayor-Mar, J. A., Garcia, L. I., Aranda-Abreu, G. E., et al. (2008). Fos expression at the cerebellum following non-contact arousal and mating behavior in male rats. Physiology & Behavior, 93, 357–363.CrossRefGoogle Scholar
  167. Martin, J. T., Puts, D. A., & Breedlove, S. M. (2008). Hand asymmetry in heterosexual and homosexual men and women: Relationship to 2D:4D digit ratios and other sexually dimorphic anatomical traits. Archives of Sexual Behavior, 37, 119–132.PubMedCrossRefGoogle Scholar
  168. Mass, R., Hölldorfer, M., Moll, B., Bauer, R., & Wolf, K. (2009). Why we haven’t died out yet: Changes in women’s mimic reactions to visual erotic stimuli during their menstrual cycle. Hormones and Behavior, 55, 267–271.PubMedCrossRefGoogle Scholar
  169. Matthews, T. J., Grigore, M., Tang, L., Doat, M., Kow, L.-M., & Pfaff, D. W. (1997). Sexual reinforcement in the female rat. Journal of the Experimental Analysis of Behavior, 68, 399–410.PubMedCrossRefGoogle Scholar
  170. Matuszewich, L., & Dornan, W. A. (1992). Bilateral injections of a selective mu-receptor agonist (morphiceptin) into the medial preoptic nucleus produce a marked delay in the initiation of sexual behavior in the male rat. Psychopharmacology (Berl), 106, 391–396.CrossRefGoogle Scholar
  171. McCarthy, B. W. (1977). Strategies and techniques for the reduction of sexual anxiety. Journal of Sex and Marital Therapy, 3, 243–248.PubMedCrossRefGoogle Scholar
  172. McCarthy, M. M., & Arnold, A. A. (2011). Reframing sexual differentiation of the brain. Nature Neuroscience, 14, 677–683.PubMedCrossRefGoogle Scholar
  173. McClintock, M. K. (1984). Group mating in the domestic rat as a context for sexual selection: Consequences for the analysis of sexual behavior and neuroendocrine responses. Advances in the Study of Behavior, 14, 1–50.CrossRefGoogle Scholar
  174. McConaghy, N. (1970). Subjective and penile plethysmograph responses to aversion therapy for homosexuality: A follow-up study. British Journal of Psychiatry, 17, 555–560.CrossRefGoogle Scholar
  175. McConaghy, N. (1974). Penile volume responses to moving and still pictures of male and female nudes. Archives of Sexual Behavior, 3, 565–570.PubMedCrossRefGoogle Scholar
  176. McEwen, B. S. (2010). Stress, sex, and neural adaptation to a changing environment: Mechanisms of neural remodeling. Annals of the New York Academy of Sciences, 1204(Suppl), E38–E59.PubMedCrossRefGoogle Scholar
  177. McGinnis, M. Y., & Vakulenko, M. (2003). Characterization of 50-kHz ultrasonic vocalizations in male and female rats. Physiology & Behavior, 80, 81–88.CrossRefGoogle Scholar
  178. Meerts, S. H., & Clark, A. S. (2009). Artificial vaginocervical stimulation induces a conditioned place preference in female rats. Hormones and Behavior, 55, 128–132.PubMedCrossRefGoogle Scholar
  179. Mehrara, B. J., & Baum, M. J. (1990). Naloxone disrupts the expression but not the acquisition by male rats of a conditioned place preference response for an oestrous female. Psychopharamacology, 101, 118–125.CrossRefGoogle Scholar
  180. Ménard, S., Coria-Avila, G. A., & Pfaus, J. G. Olfactory stimuli paired with early perinatal experience with reward directs conditioned ejaculatory preference in the male rat. (Manuscript in preparation).Google Scholar
  181. Meisel, R. L., Joppa, M. A., & Rowe, R. K. (1996). Dopamine receptor antagonists attenuate conditioned place preference following sexual behavior in female Syrian hamsters. European Journal of Pharmacology, 309, 21–24.PubMedCrossRefGoogle Scholar
  182. Mendelson, S. D., & Pfaus, J. G. (1989). Level searching: A new assay of sexual motivation in the male rat. Physiology & Behavior, 45, 337–341.CrossRefGoogle Scholar
  183. Meston, C. M., & Buss, D. M. (2007). Why humans have sex. Archives of Sexual Behavior, 36, 477–507.PubMedCrossRefGoogle Scholar
  184. Meyerson, B. J., & Lindström, L. H. (1973). Sexual motivation in the female rat. Acta Physiologica Scandinavica, 389(Suppl.), 1–80.Google Scholar
  185. Miller, R. L., & Baum, M. J. (1987). Naloxone inhibits mating and conditioned place preference for an oestrous female in male rats soon after castration. Pharmacology, Biochemistry and Behavior, 26, 781–789.CrossRefGoogle Scholar
  186. Money, J. (1986). Love maps: Clinical concepts of sexual/erotic health and pathology, paraphilia, and gender transposition in childhood, adolescence, and maturity. New York: Prometheus Books.Google Scholar
  187. Money, J., & Ehrhardt, A. A. (1972). Man & woman, boy & girl. Baltimore: Johns Hopkins University Press.Google Scholar
  188. Mooney, R. (2009). Neurobiology of song learning. Current Opinion in Neurobiology, 19, 654–660.PubMedCrossRefGoogle Scholar
  189. Moriceau, S., & Sullivan, R. M. (2004). Unique neural circuitry for neonatal olfactory learning. Journal of Neuroscience, 24, 1182–1189.PubMedCrossRefGoogle Scholar
  190. Morin, J. (1995). The erotic mind. New York: Harper.Google Scholar
  191. Moss, F. A. (1924). A study of animal drives. Journal of Experimental Psychology, 54, 310–313.Google Scholar
  192. Nelson, R. J. (2005). An introduction to behavioral endocrinology (3rd ed.). Sunderland, MA: Sinauer Associates.Google Scholar
  193. Ogas, O., & Gaddam, S. (2011). A billion wicked thoughts. New York: Dutton.Google Scholar
  194. Oldenburger, W. P., Everitt, B. J., & de Jonge, F. H. (1992). Conditioned place preference induced by sexual interaction in female rats. Hormones and Behavior, 26, 214–228.PubMedCrossRefGoogle Scholar
  195. Ortigue, S., & Bianchi-Demicheli, F. (2008). The chronoarchitecture of human sexual desire: A high-density electrical mapping study. NeuroImage, 43, 337–345.PubMedCrossRefGoogle Scholar
  196. Parada, M., Abdul-Ahad, F., Censi, S., Sparks, L., & Pfaus, J. G. (2011). Context alters the ability of clitoral stimulation to induce a sexually-conditioned partner preference in the rat. Hormones and Behavior, 59, 520–527.PubMedCrossRefGoogle Scholar
  197. Parada, M., Chamas, L., Censi, S., Coria-Avila, G., & Pfaus, J. G. (2010). Clitoral stimulation induces conditioned place preference and Fos activation in the rat. Hormones and Behavior, 57, 112–118.PubMedCrossRefGoogle Scholar
  198. Paredes, R. G., & Alonso, A. (1997). Sexual behavior regulated (paced) by the female induces conditioned place preference. Behavioral Neuroscience, 111, 123–128.PubMedCrossRefGoogle Scholar
  199. Paredes, R. G., & Martinez, I. (2001). Naloxone blocks place preference conditioning after paced mating in female rats. Behavioral Neuroscience, 115, 1363–1367.PubMedCrossRefGoogle Scholar
  200. Paredes, R. G., & Vazquez, B. (1999). What do female rats like about sex? Paced mating. Behavioural Brain Research, 105, 117–127.PubMedCrossRefGoogle Scholar
  201. Pathela, P., Hajat, A., Schillinger, J., Blank, S., Sell, R., & Mostashari, F. (2006). Discordance between sexual behavior and self-reported sexual identity: A population-based survey of New York City men. Annals of Internal Medicine, 145, 416–425.PubMedGoogle Scholar
  202. Pattij, T., de Jong, T. R., Uitterdijk, A., Waldinger, M. D., Veening, J. G., Cools, A. R., et al. (2005). Individual differences in male ejaculatory behaviour: Searching for models to study ejaculation disorders. European Journal of Neuroscience, 22, 724–734.PubMedCrossRefGoogle Scholar
  203. Paul, T., Schiffer, B., Zwarg, T., Krüger, T. H., Karama, S., Schedlowski, M., et al. (2008). Brain response to visual sexual stimuli in heterosexual and homosexual males. Human Brain Mapping, 29, 726–735.PubMedCrossRefGoogle Scholar
  204. Pavlov, I. P. (1927). Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex (G. V. Anrep, Trans.). New York: Dover.Google Scholar
  205. Pfaff, D. W. (1980). Estrogens and brain function. Berlin: Springer.CrossRefGoogle Scholar
  206. Pfaff, D. W. (1999). Drive: Neurobiological and molecular mechanisms of sexual motivation. Bradford, MA: MIT Press.Google Scholar
  207. Pfaff, D. W., Montgomery, M., & Lewis, C. (1977). Somatosensory determinants of lordosis in female rats: Behavioral definition of the estrogen effect. Journal of Comparative and Physiological Psychology, 91, 134–145.PubMedCrossRefGoogle Scholar
  208. Pfaus, J. G. (1999). Revisiting the concept of sexual motivation. Annual Review of Sex Research, 10, 120–157.PubMedGoogle Scholar
  209. Pfaus, J. G. (2009). Pathways of sexual desire. Journal of Sexual Medicine, 6, 1506–1533.PubMedCrossRefGoogle Scholar
  210. Pfaus, J. G., Damsma, G., Nomikos, G. G., Wenkstern, D. G., Blaha, C. D., Phillips, A. G., et al. (1990). Sexual behavior enhances central dopamine transmission in the male rat. Brain Research, 530, 345–348.PubMedCrossRefGoogle Scholar
  211. Pfaus, J. G., Damsma, G., Wenkstern, D., & Fibiger, H. C. (1995). Sexual activity increases dopamine transmission in the nucleus accumbens and striatum of female rats. Brain Research, 693, 21–30.PubMedCrossRefGoogle Scholar
  212. Pfaus, J. G., & Gorzalka, B. B. (1987). Opioids and sexual behavior. Neuroscience and Biobehavioral Reviews, 11, 1–34.PubMedCrossRefGoogle Scholar
  213. Pfaus, J. G., & Heeb, M. M. (1997). Implications of immediate-early gene induction in the brain following sexual stimulation of female and male rodents. Brain Research Bulletin, 44, 397–407.PubMedCrossRefGoogle Scholar
  214. Pfaus, J. G., Ismail, N., & Coria-Avila, G. A. (2010). Sexual motivation. In G. F. Koob, M. Le Moal, & R. F. Thompson (Eds.), Encyclopedia of behavioral neuroscience (Vol. 3, pp. 201–209). Oxford: Academic Press.CrossRefGoogle Scholar
  215. Pfaus, J. G., Kippin, T. E., & Centeno, S. (2001). Conditioning and sexual behavior: A review. Hormones and Behavior, 40, 291–321.PubMedCrossRefGoogle Scholar
  216. Pfaus, J. G., Kippin, T. E., & Coria-Avila, G. (2003). What can animal models tell us about human sexual response? Annual Review of Sex Research, 14, 1–63.PubMedGoogle Scholar
  217. Pfaus, J. G., Mendelson, S. D., & Phillips, A. G. (1990). A correlational and factor analysis of anticipatory and consummatory measures of sexual behavior in the male rat. Psychoneuroendocrinology, 15, 329–340.PubMedCrossRefGoogle Scholar
  218. Pfaus, J. G., & Pinel, J. P. J. (1989). Alcohol inhibits and disinhibits sexual behavior in the male rat. Psychobiology, 17, 195–201.Google Scholar
  219. Pfaus, J. G., & Wilkins, M. F. (1995). A novel environment disrupts copulation in sexually naive but not experienced male rats: Reversal with naloxone. Physiology & Behavior, 57, 1045–1049.CrossRefGoogle Scholar
  220. Pfaus, J. G., Wilkins, M. F., DiPietro, N., Benibgui, M., Toledano, R., Rowe, A., et al. (2010). Inhibitory and disinhibitory effects of psychomotor stimulants and depressants on the sexual behavior of male and female rats. Hormones and Behavior, 58, 163–176.PubMedCrossRefGoogle Scholar
  221. Piaget, J. (1967). Biology and knowledge. Chicago: University of Chicago Press.Google Scholar
  222. Rachman, S. (1966). Sexual fetishism: An experimental analogue. Psychological Record, 16, 293–296.Google Scholar
  223. Rachman, S., & Hodgson, R. J. (1968). Experimentally-induced “sexual fetishism”: Replication and development. Psychological Record, 18, 25–27.Google Scholar
  224. Rahman, Q. (2005). Fluctuating asymmetry, second to fourth finger length ratios and human sexual orientation. Psychoneuroendocrinology, 30, 382–391.PubMedCrossRefGoogle Scholar
  225. Rahman, Q., Clarke, K., & Morera, T. (2009). Hair whorl direction and sexual orientation in human males. Behavioral Neuroscience, 123, 252–256.PubMedCrossRefGoogle Scholar
  226. Ramsey, G. V. (1943). The sexual development of boys. American Journal of Psychology, 56, 217–234.CrossRefGoogle Scholar
  227. Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. F. Prokasy (Eds.), Classical conditioning II: Current research and theory (pp. 64–69). New York: Appleton-Century-Crofts.Google Scholar
  228. Reynolds, B. S. (1980). Biofeedback and facilitation of erection in men with erectile dysfunction. Archives of Sexual Behavior, 9, 101–113.PubMedCrossRefGoogle Scholar
  229. Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Research–Brain Research Reviews, 18, 247–291.PubMedCrossRefGoogle Scholar
  230. Robinson, T. E., & Berridge, K. C. (2001). Incentive-sensitization and addiction. Addiction, 96, 103–114.PubMedCrossRefGoogle Scholar
  231. Robinson, S. J., & Manning, J. T. (2000). The ratio of 2nd to 4th digit length and male homosexuality. Evolution and Human Behavior, 21, 333–345.PubMedCrossRefGoogle Scholar
  232. Rosen, R. C. (1973). Suppression of penile tumescence by instrumental conditioning. Psychosomatic Medicine, 35, 509–514.PubMedGoogle Scholar
  233. Rosen, R. C., & Kopel, S. A. (1977). Penile plethysmography and bio-feedback in the treatment of a transvestite-exhibitionist. Journal of Consulting and Clinical Psychology, 45, 908–916.PubMedCrossRefGoogle Scholar
  234. Rosen, R. C., Shapiro, D., & Schwartz, G. (1975). Voluntary control of penile tumescence. Psychosomatic Medicine, 37, 479–483.PubMedGoogle Scholar
  235. Rupp, H. A., James, T. W., Ketterson, E. D., Sengelaub, D. R., Janssen, E., & Heiman, J. R. (2009). Neural activation in the orbitofrontal cortex in response to male faces increases during the follicular phase. Hormones and Behavior, 56, 66–72.PubMedCrossRefGoogle Scholar
  236. Sachs, B. D., Akasofu, K., Citron, J. H., Daniels, S. B., & Natoli, J. H. (1994). Noncontact stimulation from estrous females evokes penile erection in rats. Physiology & Behavior, 55, 1073–1079.CrossRefGoogle Scholar
  237. Sachs, B. D., & Garinello, L. D. (1978). Interaction between penile reflexes and copulation in male rats. Journal of Comparative and Physiological Psychology, 92, 759–767.PubMedCrossRefGoogle Scholar
  238. Sachs, B. D., & Liu, Y. C. (1997). Mounting and brief noncontact exposure of males to receptive females facilitate reflexive erection in rats, even after hypogastric nerve cuts. Physiology & Behavior, 65, 413–421.CrossRefGoogle Scholar
  239. Sachs, B. D., Macaione, R., & Fegy, L. (1974). Pacing of copulatory behavior in the male rat: Effects of receptive females and intermittent shocks. Journal of Comparative and Physiological Psychology, 87, 326–331.CrossRefGoogle Scholar
  240. Sakata, J. T., Gonzalez-Lima, F., Gupta, A., & Crews, D. (2002). Repeated interactions with females elevate metabolic capacity in the limbic system of male rats. Brain Research, 936, 27–37.PubMedCrossRefGoogle Scholar
  241. Salmon, D. P., & Butters, N. (1995). Neurobiology of skill and habit learning. Current Opinion in Neurobiology, 5, 184–190.PubMedCrossRefGoogle Scholar
  242. Salu, Y. (2011). The roots of sexual arousal and sexual orientation. Medical Hypotheses, 76, 384–387.PubMedCrossRefGoogle Scholar
  243. Schwartz, M. (1956). Instrumental and consummatory measures of sexual capacity in the male rat. Journal of Comparative and Physiological Psychology, 49, 328–333.PubMedCrossRefGoogle Scholar
  244. Sevenster, P. (1973). Incompatibility of response and reward. In R. A. Hinde & J. Stevensone-Hinde (Eds.), Constraints on learning: Limitations and predispositions (pp. 265–283). London: Academic Press.Google Scholar
  245. Seward, J. P., & Seward, G. H. (1940). Studies on the reproductive activities of the guinea pig: IV. A comparison of sex drive in males and females. Journal of Genetic Psychology, 57, 429–440.Google Scholar
  246. Shaham, Y., Erb, S., & Stewart, J. (2000). Stress-induced relapse to heroin and cocaine seeking in rats: A review. Brain Research–Brain Research Reviews, 33, 13–33.PubMedCrossRefGoogle Scholar
  247. Sheffield, F. D., Wulff, J. J., & Backer, R. (1951). Reward value of copulation without sex drive reduction. Journal of Comparative and Physiological Psychology, 44, 3–8.PubMedCrossRefGoogle Scholar
  248. Siegel, L. I., Nunez, A. A., & Wade, G. N. (1981). Copulation affects body weight but not food intake or dietary self-selection in male rats. Physiology & Behavior, 27, 943–946.CrossRefGoogle Scholar
  249. Silberberg, A., & Adler, N. (1974). Modulation of the copulatory sequence of the male rat by a schedule of reinforcement. Science, 185, 374–376.PubMedCrossRefGoogle Scholar
  250. Singer, I., & Singer, J. (1972). Periodicity of sexual desire in relation to time of ovulation in women. Journal of Biological Sciences, 4, 471–481.Google Scholar
  251. Skinner, B. F. (1938). The behavior of organisms. New York: Appleton-Century-Crofts.Google Scholar
  252. Slob, A. K., Ernste, M., & van der Werff ten Bosch, J. J. (1991). Menstrual cycle phase and sexual arousability in women. Archives of Sexual Behavior, 20, 567–577.PubMedCrossRefGoogle Scholar
  253. Slyper, A. H. (2006). The pubertal timing controversy in the USA and a review of possible causative factors for the advance in timing of onset of puberty. Clinical Endocrinology, 65, 1–8.PubMedCrossRefGoogle Scholar
  254. Snowdon, C. T., Tannenbaum, P. L., Schultz-Darken, N. J., Ziegler, T. E., & Ferris, C. F. (2011). Conditioned sexual arousal in a nonhuman primate. Hormones and Behavior, 59, 696–701.PubMedCrossRefGoogle Scholar
  255. Stanislaw, H., & Rice, F. J. (1988). Correlation between sexual desire and menstrual cycle characteristics. Archives of Sexual Behavior, 17, 499–508.PubMedCrossRefGoogle Scholar
  256. Stendahl. (1959). De l’amour. New York: Schoenhof’s Books. (Original work published 1822)Google Scholar
  257. Stevens, C. (1967). The first cut is the deepest. London: Deram Records/Decca Records.Google Scholar
  258. Stone, C. P., Barker, R. G., & Tomlin, M. I. (1935). Sexual drive in potent and impotent males as measured by the Columbia obstruction box method. Journal of Genetic Psychology, 65, 461–465.Google Scholar
  259. Storms, M. D. (1981). A theory of erotic orientation development. Psychological Review, 88, 340–353.PubMedCrossRefGoogle Scholar
  260. Succu, S., Sanna, F., Melis, T., Boi, A., Argiolas, A., & Melis, M. R. (2007). Stimulation of dopamine receptors in the paraventricular nucleus of the hypothalamus of male rats induces penile erection and increases extracellular dopamine in the nucleus accumbens: Involvement of central oxytocin. Neuropharmacology, 52, 1034–1043.PubMedCrossRefGoogle Scholar
  261. Sullivan, R. M., & Hall, W. G. (1988). Reinforcers in infancy: Classical conditioning using stroking or intra-oral infusions of milk as the UCS. Developmental Psychobiology, 21, 215–223.PubMedCrossRefGoogle Scholar
  262. Swaab, D. F., Gooren, L. J., & Hofman, M. A. (1992). Gender and sexual orientation in relation to hypothalamic structures. Hormone Research, 38(Suppl. 2), 51–61.PubMedCrossRefGoogle Scholar
  263. Szechtman, H., Hershkowitz, M., & Simantov, R. (1981). Sexual behavior decreases pain sensitivity and stimulated endogenous opioids in male rats. European Journal of Pharmacology, 26, 279–285.CrossRefGoogle Scholar
  264. Talbot, N. L., Duberstein, P. R., King, D. A., Cox, C., & Giles, D. E. (2000). Personality traits of women with a history of childhood sexual abuse. Comprehensive Psychiatry, 41, 130–136.PubMedCrossRefGoogle Scholar
  265. Thor, D., & Flannelly, K. J. (1977). Social-olfactory experience and initiation of copulation in the virgin male rat. Physiology & Behavior, 19, 411–417.CrossRefGoogle Scholar
  266. Tinbergen, N. (1963). On aims and methods of ethology. Zeitschrift für Tierpsychologie, 20, 410–433.CrossRefGoogle Scholar
  267. Toates, F. (1986). Motivational systems. Cambridge, UK: Cambridge University Press.Google Scholar
  268. Tolman, E. C. (1932). Purposive behavior in animals and men. New York: Appleton-Century-Crofts.Google Scholar
  269. Vasey, P. L., & VanderLaan, D. P. (2007). Birth order and male androphilia in Samoan fa’afafine. Proceedings of the Royal Society, Biological Sciences, 274, 1437–1442.CrossRefGoogle Scholar
  270. Vasey, P. L., & VanderLaan, D. P. (2010). An adaptive cognitive dissociation between willingness to help kin and nonkin in Samoan Fa’afafine. Psychological Science, 21, 292–297.PubMedCrossRefGoogle Scholar
  271. Vuong, C., Van Uum, S. H., O’Dell, L. E., Lufty, K., & Friedman, T. C. (2010). The effects of opioids and opioid analogs on animal and human endocrine systems. Endocrine Reviews, 31, 98–132.PubMedCrossRefGoogle Scholar
  272. Waldinger, M. D. (2008). Recent advances in the classification, neurobiology, and treatment of premature ejaculation. Advances in Psychosomatic Medicine, 29, 50–69.PubMedCrossRefGoogle Scholar
  273. Waldinger, M. D., McIntosh, J., & Schweitzer, D. H. (2009). A five-nation survey to assess the distribution of the intravaginal ejaculation latency time among the general male population. Journal of Sexual Medicine, 6, 2888–2895.PubMedCrossRefGoogle Scholar
  274. Wallen, K., Winston, L. A., Gaventa, S., Davis-DaSilva, M., & Collins, D. C. (1984). Periovulatory changes in female sexual behavior and patterns of ovarian steroid concentration in group-living rhesus monkeys. Hormones and Behavior, 18, 431–450.PubMedCrossRefGoogle Scholar
  275. Wallien, M. S. C., Veenstra, R., Kreukels, B. P. C., & Cohen-Kettenis, P. T. (2010). Peer group status of gender dysphoric children: A sociometric study. Archives of Sexual Behavior, 39, 553–560.PubMedCrossRefGoogle Scholar
  276. Wang, Z. X., Liu, Y., Young, L. J., & Insel, T. R. (2000). Hypothalamic vasopressin gene expression increases in both males and females postpartum in a biparental rodent. Journal of Neuroendocrinology, 12, 111–120.PubMedCrossRefGoogle Scholar
  277. Ware, R. (1968). Development of differential reinforcing values of sexual responses in the male albino rat. Journal of Comparative and Physiological Psychology, 65, 461–465.PubMedCrossRefGoogle Scholar
  278. Warner, L. H. (1927). A study of sex drive in the white rat by means of the obstruction method. Comparative Psychology Monographs, 4, 1–67.Google Scholar
  279. Warner, R. K., Thompson, J. T., Markowski, V. P., Loucks, J. A., Bazzett, T. J., Eaton, R. C., et al. (1991). Microinjection of the dopamine antagonist cis-flupenthixol into the MPOA impairs copulation, penile reflexes and sexual motivation in male rats. Brain Research, 540, 177–182.PubMedCrossRefGoogle Scholar
  280. Whalen, R. E. (1961). Effects of mounting without intromission and intromission without ejaculation on sexual behavior and maze learning. Journal of Comparative and Physiological Psychology, 54, 409–415.PubMedCrossRefGoogle Scholar
  281. Whalen, R. E. (1966). Sexual motivation. Psychological Review, 73, 151–163.PubMedCrossRefGoogle Scholar
  282. Wilkie, D. M., MacLennan, A. J., & Pinel, J. P. (1979). Rat defensive behavior: Burying noxious foods. Journal of the Experimental Analysis of Behavior, 31, 299–306.PubMedCrossRefGoogle Scholar
  283. Wilson, E. O. (1975). Sociobiology: The new synthesis. Cambridge, MA: Belknap Press.Google Scholar
  284. Winslow, J. T., Hastings, N., Carter, C. S., Harbaugh, C. R., & Insel, T. R. (1993). A role for central vasopressin in pair bonding in monogamous prairie voles. Nature, 365, 545–548.PubMedCrossRefGoogle Scholar
  285. Witt, D. M., Carter, C. S., & Walton, D. M. (1990). Central and peripheral effects of oxytocin administration in prairie voles (Microtus ochrogaster). Pharmacology, Biochemistry and Behavior, 37, 63–69.CrossRefGoogle Scholar
  286. Yamazaki, K., Beauchamp, G. K., Kupniewski, D., Bard, J., Thomas, L., & Boyse, E. A. (1988). Familial imprinting determines H-2 selective mating preferences. Science, 240, 1331–1332.PubMedCrossRefGoogle Scholar
  287. Young, L. J., Murphy Young, A. Z., & Hammock, E. A. (2005). Anatomy and neurochemistry of the pair bond. Journal of Comparative Neurology, 493, 51–57.PubMedCrossRefGoogle Scholar
  288. Young, L. J., & Wang, Z. (2004). The neurobiology of pair-bonding. Nature Neuroscience, 7, 1048–1054.PubMedCrossRefGoogle Scholar
  289. Zamble, E., Hadad, G. M., Mitchell, J. B., & Cutmore, T. R. H. (1985). Pavlovian conditioning of sexual arousal: First- and second-order effects. Journal of Experimental Psychology: Animal Behavior Processes, 11, 598–610.PubMedCrossRefGoogle Scholar
  290. Zamble, E., Mitchell, J. B., & Findlay, H. (1986). Pavlovian conditioning of sexual arousal: Parametric and background manipulations. Journal of Experimental Psychology: Animal Behavior Processes, 12, 403–411.PubMedCrossRefGoogle Scholar
  291. Zellner, D. A., Berridge, K. C., Grill, H. J., & Ternes, J. W. (1985). Rats learn to like the taste of morphine. Behavioral Neuroscience, 99, 290–300.PubMedCrossRefGoogle Scholar
  292. Zhou, J. N., Hofman, M. A., Gooren, L. J., & Swaab, D. F. (1995). A sex difference in the human brain and its relation to transsexuality. Nature, 378, 68–70.PubMedCrossRefGoogle Scholar
  293. Zingheim, P. K., & Sandman, C. A. (1978). Discriminative control of the vaginal vasomotor response. Biofeedback Self-Regulation, 3, 29–41.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • James G. Pfaus
    • 1
    Email author
  • Tod E. Kippin
    • 2
  • Genaro A. Coria-Avila
    • 3
  • Hélène Gelez
    • 4
  • Veronica M. Afonso
    • 5
  • Nafissa Ismail
    • 6
  • Mayte Parada
    • 1
  1. 1.Center for Studies in Behavioral Neurobiology, Department of PsychologyConcordia UniversityMontrealCanada
  2. 2.Department of PsychologyUniversity of California at Santa BarbaraSanta BarbaraUSA
  3. 3.Programa de NeurobiologíaUniversidad VeracruzanaXalapaMexico
  4. 4.Pelvipharm, Domaine CNRSGif-sur-YvetteFrance
  5. 5.Department of PsychologyUniversity of Toronto MississaugaMississaugaCanada
  6. 6.Department of Psychology, Center for Neuroendocrine StudiesUniversity of MassachusettsAmherstUSA

Personalised recommendations