Archives of Sexual Behavior

, Volume 40, Issue 6, pp 1287–1292 | Cite as

Postnatal Testosterone Levels and Temperament in Early Infancy

  • Gerianne M. Alexander
  • Janet Saenz
Original Paper


Recent research showing associations between behavior and postnatal testosterone levels in male infants has suggested that the transient activation of the hypothalamic-pituitary-gonadal axis in early infancy may influence the expression of gender phenotypes in later development (i.e., the postnatal hormone hypothesis). As a further test of the relationship between postnatal hormones and behavior in infancy, we measured digit ratios and salivary testosterone in 76 male and female infants (3–4 months of age) and parents completed the Infant Behavior Questionnaire-Revised, a well-established measure of temperament in the first year of life. Consistent with our earlier findings, there were no significant sex differences in salivary testosterone levels and testosterone levels were unrelated to measures of behavior in female infants. However, in male infants, higher androgen levels predicted greater Negative Affectivity. Further examination of the four scales contributing to the measure of Negative Affectivity showed testosterone levels were a significant predictor of scores on the Distress to Limitations scale, but not of scores on Fear, Sadness, or Reactivity scales. This sex-specific association between salivary testosterone and behavior in infants is consistent with animal research showing higher prenatal androgens associated with typical male development lower the threshold of sensitivity to endogenous testosterone in postnatal life. In sum, these data provide additional support for the postnatal hormone hypothesis and suggest postnatal testosterone levels may influence the development of emotional regulation in male infants.


Postnatal androgens Infant development Temperament Sex differences 



This work was supported by National Science Foundation Grant BCS-0618411 (GMA). We thank Dr. Teresa Wilcox and members of the Infant Cognition Lab for assistance in the recruitment of babies and their families.


  1. Alexander, G. M., Wilcox, T., & Farmer, M.-B. (2009). Hormone-behavior associations in early infancy. Hormones and Behavior, 56, 498–502.PubMedCrossRefGoogle Scholar
  2. Andersson, A. M., Toppari, J., Haavisto, A. M., Petersen, J. H., Simell, T., Simell, O., et al. (1998). Longitudinal reproductive hormone profiles in infants: Peak of inhibin B levels in infant boys exceeds levels in adult men. Journal of Clinical Endocrinology and Metabolism, 83, 675–681.PubMedCrossRefGoogle Scholar
  3. Arregger, A. L., Contreras, L. N., Tumilasci, O. R., Aquilano, D. R., & Cardoso, E. M. (2007). Salivary testosterone: A reliable approach to the diagnosis of male hypogonadism. Clinical Endocrinology, 67, 656–662.PubMedCrossRefGoogle Scholar
  4. Baum, M. J., Erskine, M. S., Kornberg, E., & Weaver, C. E. (1990). Prenatal and neonatal testosterone exposure interact to affect differentiation of sexual behavior and partner preference in female ferrets. Behavioral Neuroscience, 1990, 183–198.CrossRefGoogle Scholar
  5. Benenson, J. F., Duggan, V., & Markovits, H. (2004). Sex differences in infants’ attraction to group versus individual stimuli. Infant Behavior and Development, 27, 173–180.CrossRefGoogle Scholar
  6. Berenbaum, S. A., & Hines, M. (1992). Early androgens are related to childhood sex-typed toy preferences. Psychological Science, 3, 203–206.CrossRefGoogle Scholar
  7. Bergman, K., Glover, V., Sarkar, P., Abbott, D. H., & O’Connor, T. G. (2010). In utero cortisol and testosterone exposure and fear reactivity in infancy. Hormones and Behavior, 57, 306–312.PubMedCrossRefGoogle Scholar
  8. Boas, M., Boisen, K. A., Virtanen, H. E., Kaleva, M., Suomi, A.-M., Schmidt, I. M., et al. (2006). Postnatal penile length and growth rate correlate to serum testosterone levels: A longitudinal study of 1962 normal boys. European Journal of Endocrinology, 154, 125–129.PubMedCrossRefGoogle Scholar
  9. Breedlove, S. M., Cooke, B. M., & Jordan, C. L. (1999). The orthodox view of brain sexual differentiation. Brain, Behavior and Evolution, 54, 8–14.PubMedCrossRefGoogle Scholar
  10. Cahill, L., Haier, R. J., White, N. S., Fallon, J., Kilpatrick, L., Lawrence, C., et al. (2001). Sex-related difference in amygdala activity during emotionally influenced memory storage. Neurobiology of Learning and Memory, 75, 1–9.PubMedCrossRefGoogle Scholar
  11. Calkins, S. D., Dedmon, S. E., Gill, K. L., Lomax, L. E., & Johnson, L. M. (2002). Frustration in infancy: Implications for emotion regulation, physiological processes, and temperament. Infancy, 3, 175–197.CrossRefGoogle Scholar
  12. Campbell, D. W., & Eaton, W. O. (1999). Sex differences in the activity level of infants. Infant & Child Development, 8, 1–17.CrossRefGoogle Scholar
  13. Carson, D. J., Okuno, A., Lee, P. A., Stetton, G., Didolkar, S. M., & Migeon, C. J. (1982). Amniotic fluid steroid levels: Fetuses with adrenal hyperplasia, 46, XXY fetuses, and normal fetuses. American Journal of Diseases of Children, 136, 218–222.PubMedGoogle Scholar
  14. Cohen, J. (1977). Statistical analysis for the behavioral sciences. New York: Academic Press.Google Scholar
  15. Collaer, M. L., Brook, C. G. D., Conway, G. S., Hindmarsh, P. C., & Hines, M. (2009). Motor development in individuals with congential adrenal hyperplasia: Stregnth, targeting, and fine motor skill. Psychoneuroendocrinology, 34, 249–258.PubMedCrossRefGoogle Scholar
  16. Cooke, B. M., Tabibnia, G., & Breedlove, S. M. (1999). A brain sexual dimorphism controlled by adult circulating androgens. Proceedings of the National Academy of Sciences of the United States of America, 96, 7538–7540.PubMedCrossRefGoogle Scholar
  17. Crockenberg, S. C., Leerkes, E. M., & Barrig Jo, P. S. (2008). Predicting aggressive behavior in the third year from infant reactivity and regulation as moderated by maternal behavior. Development and Psychopathology, 20, 37–54.PubMedCrossRefGoogle Scholar
  18. Davis, M., & Emory, E. (1995). Sex differences in neonatal stress reactivity. Child Development, 66, 14–27.PubMedCrossRefGoogle Scholar
  19. de Ronde, W., van der Schouw, Y. T., Pierik, F. H., Pols, H. A., Muller, J., Grobbee, D. E., et al. (2005). Serum levels of sex hormone-binding globulin (SHBD) are not associated with lower levels of non-SHBG-bound testosterone in male newborns and healthy men. Clinical Endocrinology, 62, 498–503.PubMedCrossRefGoogle Scholar
  20. Derntl, B., Windischberger, C., Robinson, S., Kryspin-Exner, I., Gur, R. C., Moser, E., et al. (2009). Amygdala activity to fear and anger in healthy young males is associated with testosterone. Psychoneuroendocrinology, 34, 687–693.PubMedCrossRefGoogle Scholar
  21. Dixson, A. F., Brown, G. R., & Nevison, C. M. (1998). Developmental significance of the postnatal testosterone “surge” in male primates. In L. Ellis & L. Ebertz (Eds.), Males, females, and behavior: Toward biological understanding (pp. 129–145). Westport, CT: Praeger Publishers/Greenwood Publishing Group.Google Scholar
  22. Ernst, M., Maheu, F. S., Schroth, E., Hardin, J., Golan, L. G., Camerson, J., et al. (2007). Amygdala function in adolscents with congenital adrenal hyperplasia: A model for the study of early steroid abnormalities. Neuropsychologia, 45, 2104–2113.PubMedCrossRefGoogle Scholar
  23. Forest, M. G., Sizonenko, P. C., Cathiard, A. M., & Bertrand, J. (1974). Hypophysogonadal function in humans during the first year of life: 1. Evidence for testicular activity in early infancy. Journal of Clinical Investigation, 53, 819–828.PubMedCrossRefGoogle Scholar
  24. Fox, N. A. (2007). Finished and unfinished business. Monographs of the Society for Research in Child Development, 72, 81–91.CrossRefGoogle Scholar
  25. Friederici, A. D., Pannekamp, A., Partsch, C.-J., Ulmen, U., Oehler, K., Schmutzler, R., et al. (2008). Sex hormone testosterone affects language organization in the infant brain. NeuroReport, 19, 283–286.PubMedCrossRefGoogle Scholar
  26. Gartstein, M. A., & Rothbart, M. K. (2003). Studying infant temperament via the Revised Infant Behavior Questionnaire. Infant Behavior and Development, 26, 64–86.CrossRefGoogle Scholar
  27. Gilmore, J. H., Lin, W., Prastawa, M. W., Looney, C. B., Vetsa, Y. S. K., Knickmeyer, R. C., et al. (2007). Regional gray matter growth, sexual dimorphism, and cerebral asymmetry in the neonatal brain. Journal of Neuroscience, 27, 1255–1260.PubMedCrossRefGoogle Scholar
  28. Hassett, J. M., Siebert, E. R., & Wallen, K. (2008). Sex differences in rhesus monkey toy preferences parallel those of children. Hormones and Behavior, 54, 359–364.PubMedCrossRefGoogle Scholar
  29. Herman, J. P., & Cullinan, W. E. (1997). Neurocircuitry of stress: Central control of the hypothalamo-pituitary-adrenocortical axis. Trends in Neurosciences, 20, 78–84.PubMedCrossRefGoogle Scholar
  30. Hines, M. (2002). Sexual differentiation of the human brain and behavior. In D. W. Pfaff, A. P. Arnold, A. M. Etgen, S. E. Fahrback, & R. T. Ruben (Eds.), Hormones, brain and behavior (Vol. 4, pp. 425–462). San Diego: Academic Press.CrossRefGoogle Scholar
  31. Hines, M. (2004). Brain gender. Oxford: Oxford University Press.Google Scholar
  32. Hines, M., & Kaufman, F. R. (1994). Androgen and the development of human sex-typical behavior: Rough-and-tumble play and sex of preferred playmates in children with congenital adrenal hyperplasia (CAH). Child Development, 65, 1042–1053.PubMedCrossRefGoogle Scholar
  33. Hoepfner, B. A., & Ward, I. L. (1988). Prenatal and neonatal androgen exposure interact to affect sexual differentiation in female rats. Behavioral Neuroscience, 102, 61–65.PubMedCrossRefGoogle Scholar
  34. Jansen, J., Beijers, R., Riksen-Walraven, M., & de Weerth, C. (2010). Cortisol reactivity in young infants. Psychoneuroendocrinology, 35, 329–338.PubMedCrossRefGoogle Scholar
  35. Johnson, H. H. (2001). The development and neural basis of face recognition: Comment and speculation. Infant and Child Development, 10, 31–33.CrossRefGoogle Scholar
  36. Main, K. M., Schmidt, I. M., & Skakkebaek, N. E. (2005). A possible role for reproductive hormones in newborn boys: Progressive hypogonadism with the postnatal testosterone peak. Journal of Clinical Endocrinology and Metabolism, 85, 4905–4907.CrossRefGoogle Scholar
  37. Manuck, S. B., Marsland, A. L., Flory, J. D., Gorka, A., Ferrell, T. E., & Hariri, A. R. (2010). Salivary testosterone and trinucleotide (CAG) length polymorphism in the androgen receptor gene predict amygdala reactivity in men. Psychoneuroendocrinology, 35, 94–104.PubMedCrossRefGoogle Scholar
  38. Mathews, G. A., Fane, B. A., Conway, G. S., Brook, C. G. D., & Hines, M. (2009). Personality and congenital hyperplasia: Possible effects of prenatal androgen exposure. Hormones and Behavior, 55, 285–291.PubMedCrossRefGoogle Scholar
  39. McIntyre, M. H. (2006). The use of digit ratios as markers for perinatal androgen action. Reproductive Biology and Endocrinology, 4, 10–18.PubMedCrossRefGoogle Scholar
  40. McIntyre, M. H., & Edwards, C. P. (2009). The early development of gender differences. Annual Review of Anthropology, 38, 83–97.CrossRefGoogle Scholar
  41. Pasterski, V. L., Hindmarsch, P., Geffner, M., Brook, C., Brain, C., & Hines, M. (2007). Increased aggression and activity level in 3- to 11-year-old girls with congenital adrenal hyperplasia (CAH). Hormones and Behavior, 52, 368–374.PubMedCrossRefGoogle Scholar
  42. Perez-Edgar, K., Schmidt, L. A., Henderson, H. A., Schulkin, J., & Fox, N. A. (2008). Salivary cortisol levels and infant temperament shape developmental trajectories in boys at risk for behavioral maladjustment. Psychoneuroendocrinology, 33, 916–925.PubMedCrossRefGoogle Scholar
  43. Rothbart, M. K. (1981). Measurement of temperament in infancy. Child Development, 52, 569–578.CrossRefGoogle Scholar
  44. Swan, S. H., Liu, F., Hines, M., Kruse, R. L., Wang, C., Redmon, J. B., et al. (2010). Prenatal phthalate exposure and reduced masculine play in boys. International Journal of Andrology, 33, 259–269.PubMedCrossRefGoogle Scholar
  45. Welsh, M., Saunders, P. T., Fisken, M., Scott, H. M., Hutchison, G. R., Smith, L. B., et al. (2008). Identification in rats of a programming window for reproductive tract masculinization, disruption of which leads to hypospadias and cryptorchidism. Journal of Clinical Investigations, 118, 1479–1490.CrossRefGoogle Scholar
  46. Zucker, K. J., Bradley, S. J., Oliver, G., Blake, J., Fleming, S., & Hood, J. (1996). Psychosexual development of women with congenital adrenal hyperplasia. Hormones and Behavior, 30, 300–318.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of PsychologyTexas A & M UniversityCollege StationUSA

Personalised recommendations