Archives of Sexual Behavior

, Volume 37, Issue 1, pp 112–118 | Cite as

Genetic and Environmental Influences on 2D:4D Finger Length Ratios: A Study of Monozygotic and Dizygotic Male and Female Twins

  • Kyle L. Gobrogge
  • S. Marc Breedlove
  • Kelly L. Klump
ORIGINAL PAPER: MINOT SPECIAL ISSUE

Abstract

Recent studies have shown significant sex differences in the pattern of 2D:4D finger length ratios in humans and several other mammalian species. In humans, these ratios are suggested to be negatively correlated with prenatal exposure to testosterone, positively correlated with prenatal estrogen, and exhibit sex specific patterns of association with sexually dimorphic clinical phenotypes. However, the relative contributions of genetic and environmental influences on digit ratios in men and women are currently unknown. Therefore, the purpose of the current study was to examine genetic and environmental influences on 2D:4D ratios in twins. Participants included 146 monozygotic (MZ) and 154 dizygotic (DZ) adult male and female twins participating in the Michigan State University Twin Study of Behavioral Adjustment and Development. Overall, biometric model-fitting analyses indicated significant additive genetic and nonshared environmental influences on digit ratios. Findings suggest greater similarity between 2D:4D ratios in MZ relative to DZ twins that can be accounted for by genetic and nonshared environmental factors.

Keywords

Steroid hormones 2D:4D Finger length ratios Sry Sex differences Twins 

References

  1. Akaike, H. (1987). Factor analysis and AIC. Psychometrika, 52, 317–332.CrossRefGoogle Scholar
  2. Brown, W. M., Finn, C. J., & Breedlove, S. M. (2002). Sexual dimorphism in digit-length ratios of laboratory mice. Anatomical Record, 267, 231–234.PubMedCrossRefGoogle Scholar
  3. Brown, W. M., Hines, M., Fane, B. A., & Breedlove, S. M. (2002). Masculinized finger length patterns in human males and females with congenital adrenal hyperplasia. Hormones and Behavior, 42, 380–386.PubMedCrossRefGoogle Scholar
  4. Buck, J. J., Williams, R. M., Hughes, I. A., & Acerini, C. L. (2003). In-utero androgen exposure and 2nd to 4th digit length ratio-comparisons between healthy controls and females with classical congenital adrenal hyperplasia. Human Reproduction, 18, 976–979.PubMedCrossRefGoogle Scholar
  5. Burley, N. T., & Foster, V. S. (2004). Digit ratio varies with sex, egg order and strength of mate preference in zebra finches. Proceedings Biological Sciences, 271, 239–244.CrossRefGoogle Scholar
  6. Csatho, A., Osvath, A., Bicsak, E., Karadi, K., Manning, J., & Kallai, J. (2003). Sex role identity related to the ratio of second to fourth digit length in women. Biological Psychology, 62, 147–156.PubMedCrossRefGoogle Scholar
  7. Fraga, M. F., Ballestar, E., Paz, M. F., Ropero, S., Setien, F., Ballestar, M. L., et al. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proceedings of the National Academy of Sciences USA, 102, 10604–10609.CrossRefGoogle Scholar
  8. Garn, S. M., Burdi, A. R., Babler, W. J., & Stinson, S. (1975). Early prenatal attainment of adult metacarpal-phalangeal rankings and proportions. American Journal of Physical Anthropology, 43, 327–332.PubMedCrossRefGoogle Scholar
  9. George, R. (1930). Human finger types. Anatomical Record, 46, 199–204.CrossRefGoogle Scholar
  10. Hall, L. S., & Love, C. T. (2003). Finger-length ratios in female monozygotic twins discordant for sexual orientation. Archives of Sexual Behavior, 32, 23–28.PubMedCrossRefGoogle Scholar
  11. Hanley, N. A., Hagan, D. M., Clement-Jones, M., Ball, S. G., Strachan, T., Salas-Cortes, L., et al. (2000). SRY, SOX9, and DAX1 expression patterns during human sex determination and gonadal development. Mechanisms of Development, 91, 403–407.PubMedCrossRefGoogle Scholar
  12. Jordan, B. K., Mohammed, M., Ching, S. T., Delot, E., Chen, X. N., Dewing, P., et al. (2001). Up-regulation of WNT-4 signaling and dosage-sensitive sex reversal in humans. American Journal of Human Genetics, 68, 1102–1109.PubMedCrossRefGoogle Scholar
  13. Klump, K. L., Gobrogge, K. L., Perkins, P. S., Thorne, D., Sisk, C. L., & Breedlove, S. M. (2006). Preliminary evidence that gonadal hormones organize and activate disordered eating. Psychological Medicine, 36, 539–546.PubMedCrossRefGoogle Scholar
  14. Manning, J. T. (2002). Digit ratio: A pointer to fertility, behavior, and health. New Brunswick, NJ: Rutgers University Press.Google Scholar
  15. Manning, J. T., Barley, L., Walton, J., Lewis-Jones, D. I., Trivers, R. L., Singh, D., et al. (2000). The 2nd:4th digit ratio, sexual dimorphism, population differences, and reproductive success: Evidence for sexually antagonistic genes? Evolution and Human Behavior, 21, 163–183.PubMedCrossRefGoogle Scholar
  16. Manning, J. T., Trivers, R. L., Thornhill, R., & Singh, D. (2000). The 2nd:4th digit ratio and asymmetry of hand performance in Jamaican children. Laterality, 5, 121–132.PubMedCrossRefGoogle Scholar
  17. Manning, J. T., Churchill, A. J. G., & Peters, M. (2007). The effects of sex, ethnicity, and sexual orientation on self-measured digit ratio (2D:4D). Archives of Sexual Behavior, 36, 223–233.PubMedCrossRefGoogle Scholar
  18. Martel, M. M., Gobrogge, K. L., Breedlove, S. M., & Nigg, J. T. (in press). Masculinized finger-length ratios of boys, but not girls, are associated with attention-deficit/hyperactivity disorder. Behavioral Neuroscience.Google Scholar
  19. Martin, M. G., Eaves, L. J., Kearsey, M. J., & Davies, P. (1978). The power of the classical twin study. Heredity, 40, 97–116.PubMedGoogle Scholar
  20. McFadden, D., & Bracht, M. S. (2005). Sex differences in the relative lengths of metacarpals and metatarsals in gorillas and chimpanzees. Hormones and Behavior, 47, 99–111.PubMedCrossRefGoogle Scholar
  21. McFadden, D., & Shubel, E. (2002). Relative lengths of fingers and toes in human males and females. Hormones and Behavior, 42, 492–500.PubMedCrossRefGoogle Scholar
  22. McFadden, D., Loehlin, J. C., Breedlove, S. M., Lippa, R. A., Manning, J. T., & Rahman, Q. (2005). A reanalysis of five studies on sexual orientation and the relative length of the 2nd and 4th fingers (the 2D:4D ratio). Archives of Sexual Behavior, 34, 341–356.PubMedCrossRefGoogle Scholar
  23. McFadden, D., Westhafer, J. G., Pasanen, E. G., Carlson, C., & Tucker, D. M. (2005). Physiological evidence of hypermasculinization in boys with inattentive type of attention-deficit/hyperactivity disorder. Clinical Neuroscience Research, 5, 233–245.CrossRefGoogle Scholar
  24. Meeks, J. J., Weiss, J., & Jameson, J. L. (2003). Dax1 is required for testis determination. Nature Genetics, 34, 32–33.PubMedCrossRefGoogle Scholar
  25. Neale, M. C. (1995). Mx: Statistical modeling (3rd ed.). Department of Psychiatry, Box 710 MCV, Richmond, VA.Google Scholar
  26. Neale, M. C., & Cardon, L. R. (1992). Methodology for genetic studies of twins and families. Boston, MA: Kluwer Academic Publishers.Google Scholar
  27. Okten, A., Kalyoncu, M., & Yaris, N. (2002). The ratio of second- and fourth-digit lengths and congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Early Human Development, 70, 47–54.PubMedCrossRefGoogle Scholar
  28. Patel, M., Dorman, K. S., Zhang, Y. H., Huang, B. L., Arnold, A. P., Sinsheimer, J. S., et al. (2001). Primate DAX1, SRY, and SOX9: Evolutionary stratification of sex-determination pathway. American Journal of Human Genetics, 68, 275–280.PubMedCrossRefGoogle Scholar
  29. Paul, S. N., Kato, B. S., Cherkas, L. F., Andrew, T., & Spector, T. D. (2006). Heritability of the second to fourth digit ratio (2D:4D): A twin study. Twin Research and Human Genetics, 9, 215–219.PubMedCrossRefGoogle Scholar
  30. Plomin, R., DeFries, J. C., & McClearn, G. E. (1990). Behavioral genetics: A primer (2nd ed.). New York: Freeman Company.Google Scholar
  31. Putz, D. A., Gaulin, S. J. C., Sporter, R. J., & McBurney, D. H. (2004). Sex hormones and finger length: What does 2D:4D indicate? Evolution and Human Behavior, 25, 182–199.CrossRefGoogle Scholar
  32. Rahman, Q. (2005). Fluctuating asymmetry, second to fourth finger length ratios and human sexual orientation. Psychoneuroendocrinology, 30, 382–391.PubMedCrossRefGoogle Scholar
  33. Rahman, Q., & Wilson, G. D. (2003). Sexual orientation and the 2nd to 4th finger length ratio: Evidence for organising effects of sex hormones or developmental instability? Psychoneuroendocrinology, 28, 288–303.PubMedCrossRefGoogle Scholar
  34. Swain, A., Narvaez, V., Burgoyne, P., Camerino, G., & Lovell-Badge, R. (1998). Dax1 antagonizes Sry action in mammalian sex determination. Nature, 391, 761–767.PubMedCrossRefGoogle Scholar
  35. Vilain, E., & McCabe, E. R. (1998). Mammalian sex determination: From gonads to brain. Molecular Genetics and Metabolism, 65, 74–84.PubMedCrossRefGoogle Scholar
  36. Williams, T. J., Pepitone, M. E., Christensen, S. E., Cooke, B. M., Huberman, A. D., Breedlove, N. J., et al. (2000). Finger-length ratios and sexual orientation. Nature, 404, 455–456.PubMedCrossRefGoogle Scholar
  37. Williams, J. H. G., Greenhalgh, K. D., & Manning, J. T. (2003). Second to fourth finger ratio and possible precursors of developmental psychopathology in preschool children. Early Human Development, 72, 57–65.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Kyle L. Gobrogge
    • 1
  • S. Marc Breedlove
    • 2
  • Kelly L. Klump
    • 2
  1. 1.Department of PsychologyFlorida State UniversityTallahasseeUSA
  2. 2.Department of PsychologyMichigan State UniversityEast LansingUSA

Personalised recommendations