Archives of Sexual Behavior

, 37:100 | Cite as

Spatial Ability and Prenatal Androgens: Meta-Analyses of Congenital Adrenal Hyperplasia and Digit Ratio (2D:4D) Studies

  • David A. Puts
  • Michael A. McDaniel
  • Cynthia L. Jordan
  • S. Marc Breedlove


Hormonal manipulations indicate that early androgens organize sex differences in spatial ability in laboratory rats. In humans, spatial ability is also sexually dimorphic, and information about the effects of prenatal androgens on spatial ability can be obtained from studies of congenital adrenal hyperplasia (CAH) and the ratio of the second and fourth finger lengths (2D:4D). CAH is characterized by prenatal overproduction of adrenal androgens and several lines of evidence suggest that 2D:4D reflects prenatal androgen exposure. Some studies have found that these proxy measures of prenatal androgens predict spatial ability, others have found no significant relationship, and yet others have obtained results in the opposite direction. In light of these mixed findings, we conducted meta-analyses of published literature and unpublished results to determine if, across studies, either of these indicators of prenatal androgens predicts performance on spatial tasks that show a male advantage. In addition, we applied a trim and fill analysis to the data in search of asymmetry that might be an indication of publication bias. Results indicated that females with CAH perform better on these spatial tasks, and CAH males perform worse, than do controls. Little or no relationship exists between 2D:4D and spatial ability. Implications for possible hormonal contributions and the developmental timing of sex differences in spatial cognition are discussed.


Androgens Congenital adrenal hyperplasia Digit ratio Spatial ability 2D:4D 


  1. Astur, R. S., Ortiz, M. L., & Sutherland, R. J. (1998). A characterization of performance by men and women in a virtual Morris water task: A large and reliable sex difference. Behavioural Brain Research, 93, 185–190.PubMedCrossRefGoogle Scholar
  2. Austin, E. J., Manning, J. T., McInroy, K., & Mathews, E. (2002). A preliminary investigation of the associations between personality, cognitive ability and digit ratio. Personality and Individual Differences, 33, 1115–1124.CrossRefGoogle Scholar
  3. Baker, S. W., & Ehrhardt, A. A. (1974). Prenatal androgen, intelligence, and cognitive sex differences. In R. C. Friedman, R. M. Richart, & R. L. Vande Wiele (Eds.), Sex differences in behavior (pp. 53–76). New York: Wiley.Google Scholar
  4. Berenbaum, S. A. (1999). Effects of early androgens on sex-typed activities and interests in adolescents with congenital adrenal hyperplasia. Hormones and Behavior, 35, 102–110.PubMedCrossRefGoogle Scholar
  5. Berenbaum, S. A. (2001). Cognitive function in congenital adrenal hyperplasia. Endocrinology and Metabolism Clinics of North America, 30, 173–192.PubMedGoogle Scholar
  6. Bodner, G. M., & Guay, R. B. (1997). The Purdue visualization of rotations test. The Chemical Educator, 2, 1–18.CrossRefGoogle Scholar
  7. Borenstein, M., Hedges, L., Higgins, J., & Rothstein, H. (2005). Comprehensive meta-analysis Version 2. Englewood, NJ: Biostat.Google Scholar
  8. Bowman, R. E., MacLusky, N. J., Sarmiento, Y., Frankfurt, M., Gordon, M., & Luine, V. N. (2004). Sexually dimorphic effects of prenatal stress on cognition, hormonal responses, and central neurotransmitters. Endocrinology, 145, 3778–3787.PubMedCrossRefGoogle Scholar
  9. Brown, W. M., Hines, M., Fane, B. A., & Breedlove, S. M. (2002). Masculinized finger length patterns in human males and females with congenital adrenal hyperplasia. Hormones and Behavior, 42, 380–386.PubMedCrossRefGoogle Scholar
  10. Buck, J. J., Williams, R. M., Hughes, I. A., & Acerini, C. L. (2003). In-utero androgen exposure and 2nd to 4th digit length ratio-comparisons between healthy control and females with classical congenital adrenal hyperplasia. Human Reproduction, 18, 976–979.PubMedCrossRefGoogle Scholar
  11. Cohen, J. (1988). Statistical power for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.Google Scholar
  12. Cole-Harding, S., Morstad, A. L., & Wilson, J. R. (1988). Spatial ability in members of opposite-sex twin pairs. Behavior Genetics, 18, 710.Google Scholar
  13. Coolican, J., & Peters, M. (2003). Sexual dimorphism in the 2D/4D ratio and its relation to mental rotation performance. Evolution and Human Behavior, 24, 179–183.CrossRefGoogle Scholar
  14. Cooper, L. A., & Shepard, R. N. (1973). Chronometric studies of the rotation of mental images. In W. G. Chase (Ed.), Visual information processing (pp. 75–176). Oxford: Academic Press.Google Scholar
  15. Csatho, A., Osvath, A., Karadi, K., Bicsak, E., Manning, J. T., & Kallai, J. (2003). Spatial navigation related to the ratio of second to fourth digit length in women. Learning and Individual Differences, 13, 239–249.CrossRefGoogle Scholar
  16. Dawson, J. L., Cheung, Y. M., & Lau, R. T. (1975). Developmental effects of neonatal sex hormones on spatial and activity skills in the white rat. Biological Psychology, 3, 213–229.PubMedCrossRefGoogle Scholar
  17. Dorr, H. G., & Sippell, W. G. (1993). Prenatal dexamethasone treatment in pregnancies at risk for congenital adrenal hyperplasia due to 21-hydroxylase deficiency: Effect on midgestational amniotic fluid steroid levels. Journal of Clinical Endocrinology and Metabolism, 76, 117–120.PubMedCrossRefGoogle Scholar
  18. Driscoll, I., Hamilton, D. A., Petropoulos, H., Yeo, R. A., Brooks, W. M., Baumgartner, R. N., et al. (2003). The aging hippocampus: Cognitive, biochemical and structural findings. Cerebral Cortex, 13, 1344–1351.PubMedCrossRefGoogle Scholar
  19. Driscoll, I., Hamilton, D. A., Yeo, R. A., Brooks, W. M., & Sutherland, R. J. (2005). Virtual navigation in humans: The impact of age, sex, and hormones on place learning. Hormones and Behavior, 47, 326–335.PubMedCrossRefGoogle Scholar
  20. Dureman, I., Kebbon, L., & Osterberg, E. (1971). Manual till DS-batteriet. Stockholm: Psykologiforlaget.Google Scholar
  21. Duval, S. J., & Tweedie, R. L. (2000). A non-parametric “trim and fill” method of accounting for publication bias in meta-analysis. Journal of the American Statistical Association, 95, 89–98.CrossRefGoogle Scholar
  22. Ekstrom, R. B., French, J. W., Harman, H. H., & Dermen, D. (1976). Manual for kit of factor-referenced cognitive tests. Princeton, NJ: Educational Testing Service.Google Scholar
  23. Grimshaw, G. M., Sitarenios, G., & Finegan, J. A. (1995). Mental rotation at 7 years: Relations with prenatal testosterone levels and spatial play experiences. Brain and Cognition, 29, 85–100.PubMedCrossRefGoogle Scholar
  24. Hampson, E., Rovet, J. F., & Altmann, D. (1998). Spatial reasoning in children with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Developmental Neuropsychology, 14, 299–320.CrossRefGoogle Scholar
  25. Healy, W. (1914). A pictorial completion test. Psychological Review, 21, 189–203.CrossRefGoogle Scholar
  26. Helleday, J., Bartfai, A., Ritzen, E. M., & Forsman, M. (1994). General intelligence and cognitive profile in women with congenital adrenal hyperplasia (CAH). Psychoneuroendocrinology, 19, 343–356.PubMedCrossRefGoogle Scholar
  27. Hines, M. (2004). Brain gender. New York: Oxford University Press.Google Scholar
  28. Hines, M., Fane, B. A., Pasterski, V. L., Mathews, G. A., Conway, G. S., & Brook, C. (2003). Spatial abilities following prenatal androgen abnormality: Targeting and mental rotations performance in individuals with congenital adrenal hyperplasia. Psychoneuroendocrinology, 28, 1010–1026.PubMedCrossRefGoogle Scholar
  29. Hojbjerg Gravholt, C., Svenstrup, B., Bennett, P., & Sandahl Christiansen, J. (1999). Reduced androgen levels in adult turner syndrome: Influence of female sex steroids and growth hormone status. Clinical Endocrinology, 50, 791–800.CrossRefGoogle Scholar
  30. Imperato-McGinley, J., Peterson, R. E., Gautier, T., Cooper, G., Danner, R., Arthur, A., et al. (1982). Hormonal evaluation of a large kindred with complete androgen insensitivity: Evidence for secondary 5 alpha-reductase deficiency. Journal of Clinical Endocrinology and Metabolism, 54, 931–941.PubMedGoogle Scholar
  31. Imperato-McGinley, J., Pichardo, M., Gautier, T., Voyer, D., & Bryden, M. P. (1991). Cognitive abilities in androgen-insensitive subjects: Comparison with control males and females from the same kindred. Clinical Endocrinology, 34, 341–347.PubMedGoogle Scholar
  32. Isgor, C., & Sengelaub, D. R. (1998). Prenatal gonadal steroids affect adult spatial behavior, CA1 and CA3 pyramidal cell morphology in rats. Hormones and Behavior, 34, 183–198.PubMedCrossRefGoogle Scholar
  33. Isgor, C., & Sengelaub, D. R. (2003). Effects of neonatal gonadal steroids on adult CA3 pyramidal neuron dendritic morphology and spatial memory in rats. Journal of Neurobiology, 55, 179–190.PubMedCrossRefGoogle Scholar
  34. Jackson, D. N. I., Vernon, P. A., & Jackson, D. N. (1993). Dynamic spatial performance and general intelligence. Intelligence, 17, 451–460.CrossRefGoogle Scholar
  35. Jager, A. O., & Althoff, K. (1983). WILDE-intelligenz-test. Gottingen: Hogrefe.Google Scholar
  36. Jonasson, Z. (2005). Meta-analysis of sex differences in rodent models of learning and memory: A review of behavioral and biological data. Neuroscience and Biobehavioral Reviews, 28, 811–825.PubMedCrossRefGoogle Scholar
  37. Joseph, R., Hess, S., & Birecree, E. (1978). Effects of hormone manipulations and exploration on sex differences in maze learning. Behavioral Biology, 24, 364–377.PubMedCrossRefGoogle Scholar
  38. Kempel, P., Gohlke, B., Klempau, J., Zinsberger, P., Reuter, M., & Hennig, J. (2005). Second-to-fourth digit lengths, testosterone and spatial ability. Intelligence, 33, 215–230.CrossRefGoogle Scholar
  39. Kitraki, E., Kremmyda, O., Youlatos, D., Alexis, M. N., & Kittas, C. (2004). Gender-dependent alterations in corticosteroid receptor status and spatial performance following 21 days of restraint stress. Neuroscience, 125, 47–55.PubMedCrossRefGoogle Scholar
  40. Maccoby, E. E., & Jacklin, C. N. (1974). The psychology of sex differences. Stanford, CA: Stanford University Press.Google Scholar
  41. Malas, M. A., Dogan, S., Hilal Evcil, E., & Desdicioglu, K. (2006). Fetal development of the hand, digits and digit ratio (2D:4D). Early Human Development, 82, 469–475.PubMedCrossRefGoogle Scholar
  42. Malouf, M. A., Migeon, C. J., Carson, K. A., Petrucci, L., & Wisniewski, A. B. (2006). Cognitive outcome in adult women affected by congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Hormone Research, 65, 142–150.PubMedCrossRefGoogle Scholar
  43. Mann, V. A., Sasanuma, S., Sakuma, N., & Masaki, S. (1990). Sex differences in cognitive abilities: A cross-cultural perspective. Neuropsychologia, 28, 1063–1077.PubMedCrossRefGoogle Scholar
  44. Manning, J. T. (2002). Digit ratio: A pointer to fertility, behavior, and health. New Brunswick, NJ: Rutgers University Press.Google Scholar
  45. Manning, J. T., Bundred, P. E., Newton, D. J., & Flanagan, B. F. (2003). The second to fourth digit ratio and variation in the androgen receptor gene. Evolution and Human Behavior, 24, 399–405.CrossRefGoogle Scholar
  46. Manning, J. T., Scutt, D., Wilson, J., & Lewis-Jones, D. I. (1998). The ratio of the 2nd and 4th digit length: A predictor of sperm numbers and concentrations of testosterone, luteinizing hormone and oestrogen. Human Reproduction, 13, 3000–3004.PubMedCrossRefGoogle Scholar
  47. Manning, J. T., & Taylor, R. P. (2001). Second to fourth digit ratio and male ability in sport: Implications for sexual selection in humans. Evolution and Human Behavior, 22, 61–69.PubMedCrossRefGoogle Scholar
  48. Mayes, J. T., & Jahoda, G. (1988). Patterns of visual-spatial performance and ‘spatial ability’: Dissociation of ethnic and sex differences. British Journal of Psychology, 79, 105–119.PubMedGoogle Scholar
  49. McBurney, D. H., Gaulin, S. J. C., Devineni, T., & Adams, C. (1997). Superior spatial ability of women: Stronger evidence for the gathering hypothesis. Evolution and Human Behavior, 18, 167–174.CrossRefGoogle Scholar
  50. McFadden, D., Loehlin, J. C., Breedlove, S. M., Lippa, R. A., Manning, J. T., & Rahman, Q. (2005). A reanalysis of five studies on sexual orientation and the relative length of the 2nd and 4th fingers (the 2D:4D ratio). Archives of Sexual Behavior, 34, 341–356.PubMedCrossRefGoogle Scholar
  51. McFadden, D., & Schubel, E. (2003). The relationships between otoacoustic emissions and relative lengths of fingers and toes in humans. Hormones and Behavior, 43, 421–429.PubMedCrossRefGoogle Scholar
  52. McGuire, L. S., Ryan, K. O., & Omenn, G. S. (1975). Congenital adrenal hyperplasia. II. Cognitive and behavioral studies. Behavior Genetics, 5, 175–188.PubMedCrossRefGoogle Scholar
  53. Morris, R. G. M. (1981). Spatial localization does not require the presence of local cues. Learning and Motivation, 12, 239–260.CrossRefGoogle Scholar
  54. Nijhuis-van der Sanden, M. W., Eling, P. A., & Otten, B. J. (2003). A review of neuropsychological and motor studies in Turner Syndrome. Neuroscience and Biobehavioral Reviews, 27, 329–338.CrossRefGoogle Scholar
  55. Nunez, J. L., & McCarthy, M. M. (2003). Estradiol exacerbates hippocampal damage in a model of preterm infant brain injury. Endocrinology, 144, 2350–2359.PubMedCrossRefGoogle Scholar
  56. Okten, A., Kalyoncu, M., & Yaris, N. (2002). The ratio of second- and fourth-digit lengths and congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Early Human Development, 70, 47–54.PubMedCrossRefGoogle Scholar
  57. O’Shaughnessy, P. J., Baker, P. J., & Johnston, H. (2006). The foetal Leydig cell—Differentiation, function and regulation. International Journal of Andrology, 29, 90–95.PubMedCrossRefGoogle Scholar
  58. Owen, K., & Lynn, R. (1993). Sex differences in primary cognitive abilities among blacks, Indians and whites in South Africa. Journal of Biosocial Science, 25, 557–560.PubMedGoogle Scholar
  59. Pang, S., Levine, L. S., Cederqvist, L. L., Fuentes, M., Riccardi, V. M., Holcombe, J. H., et al. (1980). Amniotic fluid concentrations of delta 5 and delta 4 steroids in fetuses with congenital adrenal hyperplasia due to 21 hydroxylase deficiency and in anencephalic fetuses. Journal of Clinical Endocrinology and Metabolism, 51, 223–229.PubMedCrossRefGoogle Scholar
  60. Perlman, S. M. (1973). Cognitive abilities of children with hormone abnormalities: Screening by psychoeducational tests. Journal of Learning Disabilities, 6, 26–34.CrossRefGoogle Scholar
  61. Peters, M., Manning, J. T., & Reimers, S. (2007). The effects of sex, sexual orientation, and digit ratio (2D:4D) on mental rotation performance. Archives of Sexual Behavior, 36, 251–260.PubMedCrossRefGoogle Scholar
  62. Poulin, M., O’Connell, R. L., & Freeman, L. M. (2004). Picture recall skills correlate with 2D:4D ratio in women but not in men. Evolution and Human Behavior, 25, 174–181.CrossRefGoogle Scholar
  63. Puts, D. A., Gaulin, S. J., & Breedlove, S. M. (2007). Sex differences in spatial ability: Evolution, hormones and the brain. In S. M. Platek, J. P. Keenan, & T. K. Shackelford (Eds.), Evolutionary cognitive neuroscience (pp. 329–379). Cambridge, MA: MIT Press.Google Scholar
  64. Putz, D. A., Gaulin, S. J., Sporter, R. J., & McBurney, D. H. (2004). Sex hormones and finger length: What does 2D:4D indicate? Evolution and Human Behavior, 25, 182–199.CrossRefGoogle Scholar
  65. Rahman, Q., Wilson, G. D., & Abrahams, S. (2004). Biosocial factors, sexual orientation and neurocognitive functioning. Psychoneuroendocrinology, 29, 867–881.PubMedCrossRefGoogle Scholar
  66. Resnick, S. M., Berenbaum, S. A., Gottesman, I. I., & Bouchard, T. J. (1986). Early hormonal influences on cognitive functioning in congenital adrenal hyperplasia. Developmental Psychology, 22, 191–198.CrossRefGoogle Scholar
  67. Ripa, C. P. L., Johannsen, T. H., Mortensen, E. L., & Muller, J. (2003). General cognitive functions, mental rotations ability, and handedness in adult females with congenital adrenal hyperplasia [Abstract]. Hormones and Behavior, 44, 72.Google Scholar
  68. Roof, R. L. (1993). Neonatal exogenous testosterone modifies sex difference in radial arm and Morris water maze performance in prepubescent and adult rats. Behavioural Brain Research, 53, 1–10.PubMedCrossRefGoogle Scholar
  69. Roof, R. L., & Havens, M. D. (1992). Testosterone improves maze performance and induces development of a male hippocampus in females. Brain Research, 572, 310–313.PubMedCrossRefGoogle Scholar
  70. Ross, J. L., Stefanatos, G. A., Kushner, H., Zinn, A., Bondy, C., & Roeltgen, D. (2002). Persistent cognitive deficits in adult women with Turner syndrome. Neurology, 58, 218–225.PubMedGoogle Scholar
  71. Rothstein, H., Sutton, A. J., & Borenstein, M. (2005). Publication bias in meta analysis: Prevention, assessment and adjustments. Chichester, UK: Wiley.Google Scholar
  72. Sanders, G., Bereckzei, T., Csatho, A., & Manning, J. T. (2005). The ratio of the 2nd to 4th finger length predicts spatial ability in men but not women. Cortex, 41, 789–795.PubMedGoogle Scholar
  73. Scarbrough, P. S., & Johnston, V. S. (2005). Individual differences in women’s facial preferences as a function of digit ratio and mental rotation ability. Evolution and Human Behavior, 26, 509–526.CrossRefGoogle Scholar
  74. Shepard, R. N., & Metzler, J. (1971). Mental rotation of three dimensional objects. Science, 171, 701–703.PubMedCrossRefGoogle Scholar
  75. Silverman, I., & Eals, M. (1992). Sex differences in spatial abilities: Evolutionary theory and data. In J. Barkow, L. Cosmides, & J. Tooby (Eds.), The adapted mind: Evolutionary psychology and the generation of culture (pp. 533–549). New York: Oxford University Press.Google Scholar
  76. Stewart, J., Skvarenina, A., & Pottier, J. (1975). Effects of neonatal androgens on open-field behavior and maze learning in the prepubescent and adult rat. Physiology and Behavior, 14, 291–295.PubMedCrossRefGoogle Scholar
  77. Thurstone, L. L., & Thurstone, T. G. (1963). Primary mental abilities. Chicago: Science Research Associates.Google Scholar
  78. van Anders, S. M., & Hampson, E. (2005). Testing the prenatal androgen hypothesis: Measuring digit ratios, sexual orientation, and spatial abilities in adults. Hormones and Behavior, 47, 92–98.PubMedCrossRefGoogle Scholar
  79. Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotations: A group test of three-dimensional spatial visualization. Perceptual and Motor Skills, 47, 599–604.PubMedGoogle Scholar
  80. Vicedomini, J. P., Nonneman, A. J., DeKosky, S. T., & Scheff, S. W. (1986). Perinatal glucocorticoids disrupt learning: A sexually dimorphic response. Physiology and Behavior, 36, 145–149.PubMedCrossRefGoogle Scholar
  81. Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychological Bulletin, 117, 250–270.PubMedCrossRefGoogle Scholar
  82. Williams, C. L., Barnett, A. M., & Meck, W. H. (1990). Organizational effects of early gonadal secretions on sexual differentiation in spatial memory. Behavioral Neuroscience, 104, 84–97.PubMedCrossRefGoogle Scholar
  83. Williams, T. J., Pepitone, M. E., Christensen, S. E., Cooke, B. M., Huberman, A. D., Breedlove, N. J., et al. (2000). Finger-length ratios and sexual orientation. Nature, 404, 455–456.PubMedCrossRefGoogle Scholar
  84. Wudy, S. A., Dorr, H. G., Solleder, C., Djalali, M., & Homoki, J. (1999). Profiling steroid hormones in amniotic fluid of midpregnancy by routine stable isotope dilution/gas chromatography-mass spectrometry: Reference values and concentrations in fetuses at risk for 21-hydroxylase deficiency. Journal of Clinical Endocrinology and Metabolism, 84, 2724–2728.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • David A. Puts
    • 2
    • 1
  • Michael A. McDaniel
    • 3
  • Cynthia L. Jordan
    • 2
  • S. Marc Breedlove
    • 2
  1. 1.Department of AnthropologyPennsylvania State UniversityUniversity ParkUSA
  2. 2.Neuroscience Program, Department of PsychologyMichigan State UniversityEast LansingUSA
  3. 3.Department of ManagementVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations