Advertisement

Artificial Intelligence and Law

, Volume 19, Issue 4, pp 333–355 | Cite as

A network approach to the French system of legal codes—part I: analysis of a dense network

  • Romain Boulet
  • Pierre Mazzega
  • Danièle Bourcier
Article

Abstract

We explore one aspect of the structure of a codified legal system at the national level using a new type of representation to understand the strong or weak dependencies between the various fields of law. In Part I of this study, we analyze the graph associated with the network in which each French legal code is a vertex and an edge is produced between two vertices when a code cites another code at least one time. We show that this network distinguishes from many other real networks from a high density, giving it a particular structure that we call concentrated world and that differentiates a national legal system (as considered with a resolution at the code level) from small-world graphs identified in many social networks. Our analysis then shows that a few communities (groups of highly wired vertices) of codes covering large domains of regulation are structuring the whole system. Indeed we mainly find a central group of influent codes, a group of codes related to social issues and a group of codes dealing with territories and natural resources. The study of this codified legal system is also of interest in the field of the analysis of real networks. In particular we examine the impact of the high density on the structural characteristics of the graph and on the ways communities are searched for. Finally we provide an original visualization of this graph on an hemicyle-like plot, this representation being based on a statistical reduction of dissimilarity measures between vertices. In Part II (a following paper) we show how the consideration of the weights attributed to each edge in the network in proportion to the number of citations between two vertices (codes) allows deepening the analysis of the French legal system.

Keywords

Dense graph Network Concentrated world Legal code Codified legal system Communities 

Notes

Acknowledgments

We are very grateful to Mme Elisabeth Catta, Rapporteur for the Higher Commission for Codification, for her interest in our work and for her helpful comments. R. Boulet has benefited from a post doctoral grant of the Institut National des Sciences de l’Univers (CNRS, Paris). This study was funded by the RTRA Sciences et Techniques de l’Aéronautique et de l’Espace (http://www.fondationstae.net/) in Toulouse (MAELIA project—http://maelia1.wordpress.com/). The yEd Graph editor has been used for producing the Figs. 1, 4, 5 and 6. Statistical properties of networks have been computed with R and the library igraph (http://www.rproject.org/); Figs. 2 and 3 were obtained with R.

References

  1. Bommarito MJ, Katz DM (2009) Properties of the United States code citation network. LSN Experimental and Empirical Studies. http://arxiv.org/abs/0911.1751
  2. Bommarito MJ, Katz DM (2010) A mathematical approach to the study of the United States code (March 25, 2010). Phys A 389(19):4195–4200CrossRefGoogle Scholar
  3. Bommarito MJ, Katz DM, Zelner J, Fowler JH (2010) Distance measures for dynamic citation networks. Phys A 389(19):4201–4208CrossRefGoogle Scholar
  4. Boulet R (2008) Comparaison de graphes, applications à l’étude d’un réseau de sociabilité paysan au moyen age. PhD thesis, Université de ToulouseGoogle Scholar
  5. Boulet R, Jouve B, Rossi F, Villa N (2008) Batch kernel sum and related laplacian methods for social network analysis. Neurocomputing 71(7–9):1257–1273CrossRefGoogle Scholar
  6. Boulet R, Mazzega P, Bourcier D (2009) Network analysis of the french environmental code. Artificial Intelligence approaches to the complexity of legal systems (AICOL 2009), RotterdamGoogle Scholar
  7. Bourcier D (1998) Approche légistique et systémique de la codification. GIP Mission de Recherche Droit et Justice. Rapport final. CNRS—Laboratoire Informatique droit linguistiqueGoogle Scholar
  8. Bourcier D (2004) Codification et légistique à l’heure du numérique: de nouveaux outils pour mieux gérer et connaître le droit. In: Larroumet C (ed) L’avenir de la codification en France et en Amérique latine—El futuro de la codificación en Francia y en América Latina, Les colloques du Sénat. Association Andres Bello des juristes francolatino-américains, pp 165–186Google Scholar
  9. Bourcier D, Mazzega P (2007a) Codification, law article and graphs. In: Lodder AR, Mommers L (eds) Legal knowledge and information systems, JURIX. IOS Press, Amsterdam, pp 29–38Google Scholar
  10. Bourcier D, Mazzega P (2007b) Toward measures of legal complexity. In: Proceedings 11th International conference on artificial intelligence and law, Stanford Law School. ACM Press, New York, pp 211–215Google Scholar
  11. Brandes U, Erlebach T (2005) Network analysis—methodological foundations. Springer, Berlin, p 472CrossRefzbMATHGoogle Scholar
  12. Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70:066111CrossRefGoogle Scholar
  13. Colizza V, Flammini A, Serrano MA, Vespignani A (2006) Detecting rich-club ordering in complex networks. Nat Phys 2:110–111CrossRefGoogle Scholar
  14. Conseil d’Etat (1991) De la sécurité juridique. Rapport Public établi par Mme F. ChandernagorGoogle Scholar
  15. Conseil d’Etat (2006) La sécurité juridique et la complexité du droit. Rapport Public établi par M. J. Claussade. Etudes & Documents, vol 57, La Documentation Française, pp 225–338Google Scholar
  16. Davis GF, Yoo M, Baker WE (2003) The small world of the American corporate elite, 1982–2001. Strateg Organ 1(3):301–326CrossRefGoogle Scholar
  17. De Fraysseix H (1999) A heuristic for graph symmetry detection. In: Proceedings of graph drawing 99. Lecture Notes in Computer Science 1731. Springer, Berlin, pp 276–285Google Scholar
  18. del Sol A, Hirotomo F, O’Meara P (2004) Topology of small-world networks of protein–protein complex structures. Bioinformatics 21(8):1311–1315CrossRefGoogle Scholar
  19. Delmas-Marty M (2007) Les forces imaginantes du droit (III): le pluralisme ordonné. Editions du Seuil, ParisGoogle Scholar
  20. Doat M, Le Goff J, Pédrot P (2007) Droit et complexité—pour une nouvelle intelligence du droit vivant. Presses Universitaires de RennesGoogle Scholar
  21. Epstein RA (1995) Simple rules for a complex world. Harvard Univ. Press, CambridgeGoogle Scholar
  22. Erdös P, Rényi A (1959) On random graphs. Publ Math 6:290–297zbMATHGoogle Scholar
  23. Fortunato S (2010) Community detection in graphs. Phys Rep 486:75–174CrossRefMathSciNetGoogle Scholar
  24. Fowler JH, Jeon S (2008) The authority of Supreme Court precedent. Soc Netw 30:16–30CrossRefGoogle Scholar
  25. Fowler JH, Johnson TR, Spriggs JF II, Jeaon S, Wahlbeck PJ (2007) Network analysis and the law: measuring the legal importance of precedents at the U.S. Supreme Court. Political Anal 15(3):324–346Google Scholar
  26. Freeman LC (1979) Centrality in social networks: conceptual clarification. Soc Netw 1(3):215–239CrossRefGoogle Scholar
  27. Gaume B (2004) Balades aléatoires dans les petits mondes lexicaux. I3—Inf Interact Intell 4(2):39–96Google Scholar
  28. Grossman J (2002) The evolution of the mathematical research collaboration graph. Congr Numerantium 158:202–212MathSciNetGoogle Scholar
  29. Halmos P (1974) Measure theory. Volume 18 de Graduate texts in mathematics. Springer, Berlin, ISBN0387900888Google Scholar
  30. Hartigan JA, Wong MA (1979) A k-means clustering algorithm. Appl Stat 28:100–108CrossRefzbMATHGoogle Scholar
  31. Kades E (1997) The laws of complexity and the complexity of laws: the implications of computational complexity theory for the law. Rutgers L Rev 49:403–484Google Scholar
  32. Kaplow L (1995) A model of the optimal complexity of legal rules. J Law Econ Organ 11(1):150–163Google Scholar
  33. Kuntz P (1992) Représentation euclidienne d’un graphe abstrait en vue de sa segmentation. Thèse de Doctorat, spécialité Mathématiques et applications aux Sciences de l’Homme, Ecole des Hautes Etudes en Sciences Sociales, ParisGoogle Scholar
  34. Latapy M, Magnien C (2008) Complex network measurements: estimating the relevance of observed properties. In: INFOCOM—the 27th conference on computer communications, IEEE, Phoenix (AZ), pp 1660–1668Google Scholar
  35. Legifrance (2009) Service Public de la Diffusion du Droit. http://www.legifrance.gouv.fr/
  36. Leicht EA, Clarkson G, Shedden K, Newman MEJ (2007) Large-scale structure of time evolving citation networks. Eur Phys J B 59:75–83CrossRefzbMATHGoogle Scholar
  37. Long SB, Swingen JA (1987) An approach to the measurement of tax law complexity. J Am Tax Assoc 8(2):22–36Google Scholar
  38. Newman MEJ (2004) Fast algorithm for detecting community structure in networks. Phys Rev E69:066133Google Scholar
  39. Newman M (2005) A measure of betweenness centrality based on random walks. Soc Netw 27(1):39–54CrossRefGoogle Scholar
  40. Ost F, van de Kerchove M (2002) De la pyramide au réseau ? Pour une théorie dialectique du droit. Publ. Facultés Univ. Saint-Louis, BruxellesGoogle Scholar
  41. Pagallo U (2006) Theoria giuridica della complessità. In: Giappichelli G (ed), TorinoGoogle Scholar
  42. Pons P, Latapy M (2005) Computing communities in large networks using random walks. J Graph Algorithms Appl 10(2):191–218MathSciNetGoogle Scholar
  43. Porter MA, Omnela J-P, Mucha PJ (2009) Communities in networks. Notices Am Math Soc 56(9):1082–1097zbMATHGoogle Scholar
  44. Ruhl JB (1997) Thinking of environmental law as a complex adaptive system: how to clean up the environment by making a mess of environmental law. Hous L Rev 34(4):933–1002Google Scholar
  45. Schuck PH (1992) Legal complexity: some causes, consequences, and cures. Duke L J 42(1):1–52CrossRefMathSciNetGoogle Scholar
  46. Secrétariat Général du Gouvernement (2007) Guide pour l’élaboration des textes législatifs et règlementaires. Premier Ministre, Conseil d’Etat. La Documentation Française, 2nd ednGoogle Scholar
  47. Tullock G (1995) On the desirable degree of detail in the law. Eur J Law Econ 2:199–209CrossRefGoogle Scholar
  48. Von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416. http://arxiv.org/abs/0711.0189,0711.0189 Google Scholar
  49. Watts DJ (2003) Small worlds: the dynamics of networks between order and randomness. Princeton University Press, PrincetonGoogle Scholar
  50. Watts DJ, Strogatz SH (1998) Collective dynamics of’small-world’ networks. Nature 393:440–442CrossRefGoogle Scholar
  51. Zhou S, Mondragón RJ (2004) The rich-club phenomenon in the internet topology. IEEE Commun Lett 8(3):180–182CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Romain Boulet
    • 1
  • Pierre Mazzega
    • 2
    • 3
  • Danièle Bourcier
    • 4
  1. 1.UMR ESPACE-DEV, IRDMontpellierFrance
  2. 2.Laboratoire Mixte International Observatoire des Changements Environnementaux, UnB/IRDUniversidade de BrasiliaBrasiliaBrazil
  3. 3.UPS (OMP), CNRS, IRD, Geosciences Environnement ToulouseUniversité de ToulouseToulouseFrance
  4. 4.CERSA CNRSUniversité de Paris 2ParisFrance

Personalised recommendations