Artificial Intelligence and Law

, Volume 14, Issue 3, pp 161–175

Meaningful electronic signatures based on an automatic indexing method

  • Maxime Wack
  • Ahmed Nait-Sidi-Moh
  • Sid Lamrous
  • Nathanael Cottin


Legal information certification and secured storage combined with documents electronic signature are of great interest when digital documents security and conservation are in concern. Therefore, these new and evolving technologies offer powerful abilities, such as identification, authentication and certification. The latter contribute to increase the global security of legal digital archives conservation and access. However, currently used cryptographic and hash coding concepts cannot intrinsically enclose cognitive information about both the signer and the signed content. Indeed, an evolution of these technologies may be necessary to achieve full text researches within hundreds or thousands of electronically signed documents. This article aims at describing a possible model along with associated processes to create and make use of these new electronic signatures called “meaningful electronic signatures” as opposed to traditional electronic signatures based on bit per bit computation.


certification electronic signature hash function indexing information systems legal information security 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, C. and Farrell, D. (March 1999). RFC2510: Internet X.509 Public Key Infrastructure Certificate Management ProtocolsGoogle Scholar
  2. Dobbertin, H., Bosselaers, A., and Preneel, B. (1996). RIPEMD-160, A Strengthened version of RIPEMD, Fast Software Encryption, LNCS vol. 1039, D. Gollmann Ed., pp. 71–82Google Scholar
  3. European Electronic Signature Standardization Initiative (EESSI) (July 1999). Final Report of the EESSI Expert TeamGoogle Scholar
  4. European Parliament and Council 1999/93/CE directiveGoogle Scholar
  5. Hansz, B., Nait-Sidi-Moh, A., Wack, M., Lamrous, S., and Cottin, N. (2006) “Signature Signifiante”. Submitted to the European Office of Patents. Patentlaan 22280 HV Rijswiijk (ZH)Google Scholar
  6. Housley, R., Polk, W., Ford, W., and Solo, D. (April 2002). RFC 3280: Internet X.509 Public Key Infrastructure, Certificate and Certificate Revocation List (CRL) ProfileGoogle Scholar
  7. Kaeo, M. (1999). Designing Network Security. Macmillan Technical Publishing, USA, ISBN 1-57870-043-4Google Scholar
  8. Kaliski Jr, B. S. (January 1992). RFC 1319: The MD2 Message-Digest Algorithm, RSA LaboratoriesGoogle Scholar
  9. Lamrous, S.-A. (1999). Modélisation et réalisation d’un système prototype interactif de recherche d’information multimédia à forte composante textuelle, PhD thesis of the University of Technology of CompiegneGoogle Scholar
  10. Lamrous, S.-A. and Trigano, P. (1997). Organisation des bases documentaires, vers une exploitation optimale, revue Document Numérique, Hermes ed., Volume 1 – no 4/1997, pp. 441–458Google Scholar
  11. Losee, R. L. and Church Jr, L. (2003). Information Retrieval with Distributed Databases: Analytic Models of Performance, IEEE Transactions on Parallel and Distributed Systems, pp. 18–27Google Scholar
  12. Menezes, A. J., Van Oorschot, P. C., Vanstone, S. A. and Février (2001). Handbook of Applied Cryptography. CRC Press, USA, ISBN 0-8493-8523-7Google Scholar
  13. National Institute of Standards and Technology (NIST) (April 1995). Secure Hash Standard (SHS), Federal Information Processing Standards Publication, FIPS PUB 180-1Google Scholar
  14. National Institute of Standards and Technology (NIST) (January 2000). Digital Signature Standard (DSS), Federal Information Processing Standards Publication, FIPS PUB 186-2Google Scholar
  15. Official Journal, March 14, 2000, p. 3968Google Scholar
  16. Preneel, B., Paul, C., and Oorschot, V. (August 1995). MDx-MAC and Building Fast MACs from Hash Functions, proc. Crypto’95, Springer-Verlag LNCSGoogle Scholar
  17. Preneel, B., Bosselaers, A., and Dobbertin, H. (1997). The Cryptographic Hash Function RIPEMD-160, CryptoBytes, vol. 3, No. 2, pp. 9–14Google Scholar
  18. Rivest, R. L. (1991). The MD4 Message Digest Algorithm, proc. Crypto’90, LNCS 537, Springer-Verlag, pp. 303–311Google Scholar
  19. Rivest, R. L. (April 1992). RFC 1320: The MD4 Message-Digest Algorithm, MIT Laboratory for Computer Science and RSA Data SecurityGoogle Scholar
  20. Rivest, R. L. (April 1992). RFC1321: The MD5 Message Digest Algorithm, Internet Activities Board, Internet Privacy Task ForceGoogle Scholar
  21. Wang, X. and Yu, H. (2005). How to Break MD5 and Other Hash Functions, Advances in Cryptology, Eurocrypt'2005, Lecture Notes in Computer Science Vol. 3494, R. Cramer ed., Springer-VerlagGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Maxime Wack
    • 1
  • Ahmed Nait-Sidi-Moh
    • 1
  • Sid Lamrous
    • 1
  • Nathanael Cottin
    • 1
  1. 1.Systems and Transports LaboratoryUniversity of Technology of Belfort-MontbeliardBelfort CedexFrance

Personalised recommendations