Advertisement

Argumentation

, Volume 29, Issue 3, pp 305–324 | Cite as

Proofs, Mathematical Practice and Argumentation

  • Begoña Carrascal
Article
  • 473 Downloads

Abstract

In argumentation studies, almost all theoretical proposals are applied, in general, to the analysis and evaluation of argumentative products, but little attention has been paid to the creative process of arguing. Mathematics can be used as a clear example to illustrate some significant theoretical differences between mathematical practice and the products of it, to differentiate the distinct components of the arguments, and to emphasize the need to address the different types of argumentative discourse and argumentative situation in the practice. I consider some issues of recent papers associated with mathematical argumentation in an attempt to contribute to the discussion about the role of arguing in mathematical practice and in the evaluation of the products of this practice. I apply this discussion to learning environments to defend the thesis that argumentative practice should be encouraged when teaching technical subjects to convey a better understanding and to improve thought and creativity.

Keywords

Argument Argumentation Mathematical practice Learning Proof 

Notes

Acknowledgments

This work was partially supported by the FFI 2010-20118 Research Project of the Spanish Ministry of Economy and Competitiveness.

References

  1. Aberdein, Andrew. 2005. The uses of argument in mathematics. Argumentation 19: 287–301.CrossRefGoogle Scholar
  2. Aberdein, Andrew. 2009. Mathematics and argumentation. Foundations of Science 14(1–2): 1–8.CrossRefGoogle Scholar
  3. Aberdein, Andrew. 2010. Observations on sick mathematics. In Philosophical perspectives on mathematical practices, ed. Bart Van Kerkhove, Jean Paul Van Bendegem, and Jonas de Vuyst, 269–300. London: College Publications.Google Scholar
  4. Aberdein, Andrew. 2011. The dialectical tier of mathematical proof. In Argumentation: Cognition & Community. Proceedings of the 9th International Conference of the Ontario Society for the Study of Argumentation (OSSA), ed. F. Zenker. Windsor, Ontario: OSSA.Google Scholar
  5. Aberdein, Andrew. 2013. Mathematical wit and mathematical cognition. Topics in Cognitive Science 5(2): 231–250.Google Scholar
  6. Aberdein, Andrew, and Ian J. Dove (eds.). 2009. Mathematical Argumentation. Foundations of Science 14(1–2). Dordrecht: SpringerGoogle Scholar
  7. Aberdein, Andrew, and Ian J. Dove (eds.). 2013. The argument of mathematics. Dordrecht: Springer.Google Scholar
  8. Alcolea Banegas, Jesús. 1998. L’Argumentació en Matemàtiques. In XIIè Congrés Valencià de Filosofia, ed. Enric Casaban i Moya. Valencià. Updated English translation in The Argument of Mathematics, 2013, eds. Andrew Aberdein and Ian J. Dove, 47–60. Dordrecht: Springer.Google Scholar
  9. Andriessen, Jerry, Michael Baker, and Dan D. Suthers (eds.). 2003. Arguing to learn: Confronting cognitions in computer-supported collaborative learning environments. Dordrecht: Kluwer.Google Scholar
  10. Andriessen, Jerry. 2009. Argumentation in higher education: Examples of actual practices with argumentation tools. In Argumentation and education: theoretical foundations and practice, eds. Nathalie Muller Mirza and Anne-Nelly Perret-Clermont, 195–213. Dordrecht: Springer.Google Scholar
  11. Atzmon, Shirley, Rina Hershkowitz, and Baruch B. Schwarz. 2006. The role of teachers in turning claims to arguments. In Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education, Vol. 5, ed. Jamila Novotna, 65–72. Prague: Charles University.Google Scholar
  12. Balacheff, Nicolas. 2010. Bridging knowing and proving in mathematics: A didactical perspective. In Explanation and proof in mathematics: philosophical and educational perspectives, ed. Gila Hanna, Hans Niels Jahnke, and Helmut Pulte, 115–135. Dordrecht: Springer.CrossRefGoogle Scholar
  13. Chazan, Daniel. 1990. Quasi-empirical views of mathematics and mathematics teaching. Interchange 21(1): 14–23.CrossRefGoogle Scholar
  14. Chazan, Daniel, and Dara Sandow. 2011. Why did you do that? Reasoning in algebra classrooms. Mathematics Teacher 104(6): 461–464.Google Scholar
  15. Coleman, Edwin. 2009. The surveyability of long proofs. Foundations of Science 14(1–2): 27–43.CrossRefGoogle Scholar
  16. Douek, Nadia. 2005. Communication in the mathematics classroom. Argumentation and development of mathematical knowledge. In Challenging perspectives on mathematics classroom communication, eds. Anna Chronaki and Iben Maj Christiansen, 145–172. Charlotte, NC: Information Age.Google Scholar
  17. Douek, Nadia, and Ezio Scali. 2000. About argumentation and conceptualisation. In Proceedings of PME-XXIV, Vol. 2, eds. Tadao Nakahara and Masataka Koyama, 249–256. Hiroshima: Hiroshima University.Google Scholar
  18. Dove, Ian J. 2009. Toward a theory of mathematical argument. Foundations of Science 14(1–2): 137–152.CrossRefGoogle Scholar
  19. Duval, Raymond. 1991. Structure du raisonnement déductif et apprentissage de la démonstration. Educational Studies in Mathematics 22(3): 233–261.CrossRefGoogle Scholar
  20. Eemeren, Frans H. van, and Peter Houtlosser. 2005. Theoretical construction and argumentative reality: An analytic model of critical discussion and conventionalised types of argumentative activity. In The Uses of Argument. Proceedings of a Conference at McMaster University 1821 May 2005, eds. David Hitchcock and Daniel Farr, 75–84. Hamilton: Ontario Society for the Study of Argumentation.Google Scholar
  21. Fallis, Don. 2003. Intentional gaps in mathematical proofs. Synthese 143: 45–69.CrossRefGoogle Scholar
  22. Ferreirós, José. 2010. Mathematical knowledge and the interplay of practices. In EPSA philosophical issues in science, ed. Mauricio Suárez, Mauro Dorato, and Miklós Rédei, 55–64. Dordrecht: Springer.CrossRefGoogle Scholar
  23. Gabbay, Dov, and John Woods. 2005. The practical turn in logic. In Handbook of philosophical logic, vol. 13, ed. Dov Gabbay, and Frans Guenthner, 15–122. The Netherlands: Springer.CrossRefGoogle Scholar
  24. Hanna, Gila. 2000. Proof, explanation and exploration: An overview. Educational Studies in Mathematics 44: 5–23.CrossRefGoogle Scholar
  25. Healy, Lulu, and Celia Hoyles. 2000. A study of proof conceptions in algebra. Journal for Research in Mathematics Education 31(4): 396–428.CrossRefGoogle Scholar
  26. Hitchcock, David. 2002. The practice of argumentative discussion. Argumentation 16(3): 287–298.CrossRefGoogle Scholar
  27. Johnson, Ralph H. 2000. Manifest rationality. A pragmatic theory of argument. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  28. Johnson, Ralph H. 2005. Theory and practice again: Challenges from Pinto and Toulmin. In The uses of argument: Proceedings of a conference at McMaster University, 18–21 May 2005, ed. David Hitchcock, and Daniel Farr, 222–231. Hamilton: Ontario Society for the Study of Argumentation.Google Scholar
  29. Kerber, Manfred, and Martin Pollet. 2007. Informal and formal representations in mathematics. Studies in Logic, Grammar and Rhetoric 10(23): 75–94.Google Scholar
  30. Krabbe, Erik C.W. 2008. Strategic maneuvering in mathematical proofs. Argumentation 22: 453–468.CrossRefGoogle Scholar
  31. Kuhn, Deanna. 1992. Thinking as argument. Harvard Educational Review 62(2): 155–178.CrossRefGoogle Scholar
  32. Kvernbekk, Tone. 2012. Argumentation in theory and practice: Gap or equilibrium? Informal Logic 32(3): 288–305.Google Scholar
  33. Lakatos, Imre. 1976. Proofs and refutations: The logic of mathematical discovery. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  34. Larvor, Brendan. 2013. What philosophy of mathematical practice can teach argumentation theory about diagrams and pictures. In The argument of mathematics, ed. Andrew Aberdein, and Ian J. Dove, 239–253. Dordrecht: Springer.CrossRefGoogle Scholar
  35. Mancosu, Paolo (ed.). 2008. The philosophy of mathematical practice. Oxford: Oxford University Press.Google Scholar
  36. Mancosu, Paolo. 2011. Explanation in Mathematics. In The stanford encyclopedia of philosophy (Summer 2011 Edition), ed. Edward N. Zalta. http://plato.stanford.edu/archives/sum2011/entries/mathematics-explanation/
  37. Maxwell, Edwin A. 1959. Fallacies in mathematics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  38. Muller Mirza, Nathalie, and Anne-Nelly Perret-Clermont (eds.). 2009. Argumentation and education: Theoretical foundations and practices. Dordrecht: Springer.Google Scholar
  39. Pease, Alison, and Ursula Martin. 2012. Seventy four minutes of mathematics: An analysis of the third mini-polymath project. In Symposium on mathematical practice and cognition II: A symposium at the AISB/IACAP World Congress 2012, ed. Alison Pease, and Larvor Brendan, 19–29. Birmingham: Society for the Study of Artificial Intelligence and the Simulation of Behaviour.Google Scholar
  40. Pinto, Robert C. 2001. Argument, inference and dialectic. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  41. Pólya, George. 1945. How to solve it. Princeton, NJ: Princeton University Press.Google Scholar
  42. Pólya, George. 1954. Mathematics and plausible reasoning. Princeton, NJ: Princeton University Press.Google Scholar
  43. Prusak, Naomi. 2007. The analysis of dialogues of dyads of pre-service teachers operating in an activity designed to foster argumentation: The case of dynamic geometry. Unpublished Master thesis, Jerusalem: The Hebrew University.Google Scholar
  44. Schwarz, Baruch B. 2009. Argumentation and learning. In Argumentation and education: Theoretical foundations and practice, eds. Nathalie Muller Mirza and Anne-Nelly Perret-Clermont, 91–126. Dordrecht: Springer.Google Scholar
  45. Schwarz, Baruch B., Naomi Prusak, and Rina Hershkowitz. 2010. Argumentation and mathematics. In Educational dialogues: Understanding and promoting productive interaction, ed. Karen Littleton, and Christine Howe, 103–127. London: Routledge.Google Scholar
  46. Tao, Terry. 2011. The Mini-polymath3 Project: 2011 IMO. http://polymathprojects.org/2011/07/19/minipolymath3-project-2011-imo/. Accessed 24 Feb 2013.
  47. Thurston, William P. 1994. On proof and progress in mathematics. Bulletin of the American Mathematical Society 30: 161–177.CrossRefGoogle Scholar
  48. Tindale, Christopher W. 2002. A concept divided: Ralph Johnson’s definition of argument. Argumentation 16: 209–309.CrossRefGoogle Scholar
  49. Toulmin, Stephen E. 1958. The uses of argument. Cambridge: Cambridge University Press.Google Scholar
  50. Toulmin, Stephen, Richard Rieke, and Allan Janik. 1979. An introduction to reasoning. London: Macmillan.Google Scholar
  51. Van Bendegem, Jean Paul, and Bart Van Kerkhove. 2009. Mathematical arguments in context. Foundations of Science 14(1–2): 45–57.Google Scholar
  52. van Eemeren, Frans H., et al. 1996. Fundamentals of argumentation theory. A handbook of historical backgrounds and contemporary developments. Mahwah, NJ: Erlbaum.Google Scholar
  53. Vega Reñón, Luis. 1999. Hacer ver, hacer saber (El rigor informal de las pruebas matemáticas clásicas). In X Congreso nacional de filosofía de la Asociación filosófica argentina. Universidad nacional de Córdoba.Google Scholar
  54. Walton, Douglas N., Christopher Reed, and Fabrizio Macagno. 2008. Argumentation schemes. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  55. Walton, Douglas N., and Erik C.W. Krabbe. 1995. Commitment in dialogue: Basic concepts of interpersonal reasoning. Albany, NY: State University of New York Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Logic and Philosophy of ScienceUniversity of the Basque Country UPV/EHUDonostia-San SebastiánSpain

Personalised recommendations