Advertisement

Histopathology associated with infection by Procamallanus (Spirocamallanus) inopinatus (Nematoda) in farmed Brycon cephalus (Characiformes) from Peru: a potential fish health problem

  • Norma L. S. Rivadeneyra
  • Omar Mertins
  • Ruben C. Cuadros
  • Jose C. O. Malta
  • Lorena V. de Matos
  • Patrick D. MathewsEmail author
Article
  • 55 Downloads

Abstract

We describe the histopathological damage caused by parasite infection in farmed specimens of matrinxã Brycon cephalus, an economic important fish for aquaculture in the Amazon region. The fish were collected from an extensive fish farm, nearby the city of Nauta, Department of Loreto, Peru. Parasitic nematodes were found infecting the small intestine in 73 of 80 specimens (91.25%) of B. cephalus. According to morphological features of the examined specimens using light and electronic microscopy, the nematode was identified as Procamallanus (Spirocamallanus) inopinatus. Histological sections of the small intestine showed important damages on the tissue, such as desquamation, abrasion, compression, hypertrophy, and villi loss as well as necrosis in muscle layer, submucosa, and mucosa. This is the first report of tissue damage occurrences in the concerned host from fish farm in Peruvian Amazon, and it confirms the high pathogenicity of the nematode species and further points out the need of improving the strategies of parasitic prevention and control in order to better prevent future disease outbreaks that compromise production.

Keywords

Aquaculture Brycon cephalus Histopathology Nematoda Peru 

Notes

Acknowledgments

N.L.S. Rivadeneyra thanks Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica, CONCYTEC (Peru), for the financial support (grant No. 230-2015 FONDECYT) provided for the Master studies. P.D. Mathews thanks São Paulo Research Foundation, FAPESP, for the Post-Doc fellowship (grant No. 2018/20482-3). O. Mertins thanks FAPESP for the research financial support (grants: 2015/23948-5 and 2016/13368-4). The authors thank G.M. James for reviewing the English idiom.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed by the authors.

References

  1. Alexandre JS, Ninhaus-Silveira A, Veríssimo-Silveira R, Buzollo H, Senhorini JA, Chaguri MP (2009) Structural analysis of the embryonic development in Brycon cephalus (Gunther, 1869). Zygote 18:173–183CrossRefGoogle Scholar
  2. Anderson JT, Nuttle T, Saldaña-Rojas JS, Pendergast TH, Flecker AS (2011) Extremely long-distance seed dispersal by an overfished Amazonian frugivore. Proc Biol Sci 278:3329–3335CrossRefGoogle Scholar
  3. Avadí A, Pelletier N, Aubin J, Ralite S, Nuñez J, Fréon P (2015) Comparative environmental performance of artisanal and commercial feed use in Peruvian freshwater aquaculture. Aquaculture 435:52–66CrossRefGoogle Scholar
  4. Bush AO, Lafferty KD, Lotz JM, Shostaak AW (1997) Parasitology meets ecology on this terms: Margolis et al. revisited. J Parasitol 83:575–583CrossRefGoogle Scholar
  5. Corrêa LL, Bastos LAD, Ceccarelli PS, Dos Reis NS (2015) Hematological and histopathological changes in Hoplias malabaricus from the São Francisco River, Brazil caused by larvae of Contracaecum sp. (Nematoda, Anisakidae). Helminthologia 52:96–103CrossRefGoogle Scholar
  6. Cuadros RC, Rivadeneyra NLS, Malta JCO, Serrano-Martínez ME, Mathews PD (2018) Morphology and surface ultrastructure of Dadaytrema oxycephala (Digenea: Cladorchiidae) with a new host record from Peruvian Amazon floodplain. Biologia 73:569–575CrossRefGoogle Scholar
  7. Dunn IJ, Russell LR, Adamst JR (1983) Cecal histopathology caused by Truttaeda cnitis truttae (Nematoda: Cucullanidae) in rainbow trout, Salmo Gairdneri. Int J Parasitol 13:441–445CrossRefGoogle Scholar
  8. Fischer C, Malta JCO, Varella AMB (2003) Fauna parasitária do tambaqui Colossoma macropomum (Cuvier, 1818) (Characiformes: Characidae) do médio rio Solimões, Estado do Amazonas (AM) e do baixo rio Amazonas Estado do Pará (PA), e seu potencial como indicadores biológicos. Acta Amaz 33:65–662CrossRefGoogle Scholar
  9. Frantova D, Moravec F (2003) Ultrastructure of the body wall of Cystidicoloides ephemeridarum (Nematoda, Cystidicolidae) in relation to histopathology of this nematode in salmonids. Parasitol Res 91:100–108CrossRefGoogle Scholar
  10. Froese R, D Pauly (2018) FishBase. www.fishbase.org ()
  11. Gaines APL, Lozano LES, Viana GM, Monteiro PC, Araújo CSO (2012) Tissue changes in the gut of Arapaima gigas (Schinz, 1822), infected by the nematode Spirocamallanus inopinatus (Travassos, 1929). Neotrop Helminthol 6:147–157Google Scholar
  12. Gomes LC, Baldisserotto B, Senhorini JA (2000) Effect of stocking density on water quality, survival, and growth of larvae of the matrinxã, Brycon cephalus (Characidae), in ponds. Aquaculture 183:73–81CrossRefGoogle Scholar
  13. Gonzales AF, Mathews PD, Luna LE, Mathews JD (2016) Outbreak of Notozothecium bethae (Monogenea: Dactylogyridae) in Myleus schomburgkii (Actinopterygii: Characiformes) cultured in the Peruvian Amazon. J Parasit Dis 40:1631–1635CrossRefGoogle Scholar
  14. Heupel MR, Bennet MB (1998) Infection of the epaulette shark, Hemiscyllium ocellatum (Bonnaterre), by the nematode parasite Proleptus australis Baylis (Spirurida: Physalopteridae). J Fish Dis 21:407–413CrossRefGoogle Scholar
  15. Howes G (1982) Review of the genus Brycon (Teleostei, Characoidei). Bull Br Mus Nat Hist Zool 43:1–47Google Scholar
  16. Iannacone JA, Lopez EN, Alvariño LF (2000) Procamallanus (Spirocamallanus) inopinatus Travassos, Artigas et Pereira 1928 (Nematoda: Camallanidae) endoparasitic of Triportheus angulatus (Spix, 1829) (Characidae) at Yarinacocha lake, Ucayaly-Peru. Biol Pesq 28:37–43Google Scholar
  17. Martins ML, Tavares-Dias M, Fujimoto RY, Onaka EM, Nomura DT (2004) Haematological alterations of Leporinus macrocephalus (Osteichtyes: Anostomidae) naturally infected by Goezia leporini (Nematoda: Anisakidae) in fish pond. Arq Bras Med Vet Zootec 56:640–646CrossRefGoogle Scholar
  18. Mathews DP, Mathews DJP, Vega AJ, Ismiño OR (2011) Massive infestation by Perulernaea gamitanae (Crustacea: Cyclopoida: Lernaidae) in juvenile gamitana, cultured in the Peruvian Amazon. Vet Mex 42:59–64Google Scholar
  19. Mathews PD, Mathews JPD, Ismiño RO (2013a) Parasitic infections in juveniles of Prochilodus nigricans ket in a semi-intensive fish farm in the Peruvian Amazon. Bull Eur Ass Fish Pathol 33:28–32Google Scholar
  20. Mathews PD, Mathews JPD, Ismiño RO (2013b) Parasitic infections in juveniles of Arapaima gigas (Schinz, 1822) cultivated in the Peruvian Amazon. Ann Parasitol 59:43–48Google Scholar
  21. Mathews PD, Mertins O, Mathews JPD, Ismiño OR (2013c) Massive parasitism by Gussevia tucunarense (Platyhelminthes: Monogenea: Dactylogyridae) in fingerlings of bujurqui-tucunare cultured in the Peruvian Amazon. Acta Parasitol 58:223–225CrossRefGoogle Scholar
  22. Mathews PD, Malheiros AF, Ismiño OR, Vasquez ND (2014) Jainus amazonensis (Monogenea: Dactylogyridae) parasites of Brycon cephalus (Günther, 1869) cultured in the lowland of the Peruvian Amazon. Croat J Fisheries 72:83–86CrossRefGoogle Scholar
  23. Mathews PD, Fernandes-Patta ACM, Gama GS, Mertins O (2018) Infestation by Ergasilus coatiarus (Copepoda: Ergasilidae) in two Amazonian cichlids with new host record from Peru: an ectoparasites natural control approach. C R Biologies 341:16–19CrossRefGoogle Scholar
  24. Matos LV, Oliveira MIB, Gomes ALS, Silva GS (2017) Morphological and histochemical changes associated with massive infection by Neoechinorhynchus buttne rae (Acanthocephala: Neoechinorhynchidae) in the farmed freshwater fish Colossoma macropomum Cuvier, 1818 from the Amazon State, Brazil. Parasitol Res 116:1029–1037CrossRefGoogle Scholar
  25. Menezes RC, Santos SMCD, Ceccarelli PS, Tavares LER, Tortelly R, Luque JL (2011) Tissue alterations in the pirarucu, Arapaima gigas, infected by Goezia spinulosa (Nematoda). Rev Bras Parasitol Vet 20:207–209CrossRefGoogle Scholar
  26. Moravec F, Vargas-Vázquez J (1996) The development of Procamallanus (Spiocamallanus) neocaballeroi (Nematoda: Camallanidae), a parasite of Astyanax fasciatus (Pisces) in Mexico. Folia Parasitol 43:61–70PubMedGoogle Scholar
  27. Noor El-Din SNA, Khalil AI, El-Sheekh HE, Radwan NA (2009) Histopathological effect of the spiruoid nematode Procamallanus laeviconchus in the stomach and intestine of Nile cat fish Clarias gariepinus. Egypt J Exp Biol Zool 5:109–113Google Scholar
  28. Petter AJ, Thatcher VE (1988) Observations sur la structure de la capsule buccale de Spirocamallanus inopinatus (Nematoda), parasite de Poisons brésiliens. Bull Mus natn Hist nat Paris 10:685–692Google Scholar
  29. Pizango-Paima EG, Pereira-Filho M, Oliveira-Pereira MI (2001) Composição corporal e alimentar do matrinxã Brycon cephalus, (GÜNTHER, 1869), na Amazônia Central. Acta Amaz 31:509–520CrossRefGoogle Scholar
  30. Ramallo G, Teran H, Teisaire E (2000) Effects produced by Spinitectus jamundensis (Nematoda, Cystidicolidae) in the stomach of the shad, Prochilodus lineatus (Pisces, Prochilodidae). Biol Chil Parasitol 55:36–38Google Scholar
  31. Rychlinski RA, Deardorff TL (1982) Spirocamallanus: a potential fish health problem. Freshwat Mar Aquar 5:22–23Google Scholar
  32. Santos CP, Moravec F (2009) Goezia spinulosa (Nematoda:Raphidascarididae), a pathogenic parasite of the arapaima Arapaima gigas (Osteichthyes). Folia Parasitol 56:55–63CrossRefGoogle Scholar
  33. Soto-Cardenas GI (2005) National Aquaculture Sector Overview – Peru. Food and Agriculture Organization.www.fao.org/fishery/countrysector/naso_peru/en ()
  34. Tavares-Dias M, Sousa TJSM, Neves LR (2014) Parasitic infections in two benthopelagic fish from Amazon: the arowana Osteoglossum bicirrhosum (Osteoglossidae) and oscar Astronotus ocellatus (Cichlidae). Biosci J 30:546–555Google Scholar
  35. Terán HR, Ramallo G, Alcaide MF (2004) Effects produced by Procamallanus Spirocamallanus hilarii Vaz Pereira, 1934 Nematoda, Camallanidae in Astyanax fasciatus and Astyanax abramis (Pisces, Characidae). Acta zool lilloana 48:123–135Google Scholar
  36. Thatcher VE (2006) Amazon fish parasites, 2nd edn. Pensoft Publishers, SofiaGoogle Scholar
  37. Travassos L, Artigas P, Pereira C (1928) Fauna helminthologica dos peixes de água doce do Brasil. Arch Inst Biol São Paulo 1:5–68Google Scholar
  38. Valladão GM, Gallani SU, Pilarski F (2016) South American fish for continental aquaculture. Rev Aquacult 10:1–19Google Scholar
  39. Wasko AP, Martins C, Oliveira C, Senhorini JA, Foresti F (2004) Genetic monitoring of the Amazonian fish matrinchã (Brycon cephalus) using RAPD markers: insights into supportive breeding and conservation programmes. J Appl Ichthyol 20:48–52CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Norma L. S. Rivadeneyra
    • 1
  • Omar Mertins
    • 2
  • Ruben C. Cuadros
    • 1
  • Jose C. O. Malta
    • 3
  • Lorena V. de Matos
    • 4
  • Patrick D. Mathews
    • 2
    • 5
    Email author
  1. 1.Faculty of Veterinary Medicine and ZootechnicsUniversidad Peruana Cayetano HerediaLimaPeru
  2. 2.Department of Biophysics, Paulista Scholl of MedicineFederal University of São PauloSão PauloBrazil
  3. 3.Laboratory of Parasitology and Pathology of FishNational Institute of Amazonian ResearchManausBrazil
  4. 4.Department of MorphologyFederal University of AmazonasManausBrazil
  5. 5.Department of Zoology, Institute of BiosciencesUniversity of São PauloSão PauloBrazil

Personalised recommendations