Advertisement

Aquaculture International

, Volume 28, Issue 1, pp 59–71 | Cite as

Simulation of Yesso scallop, Patinopecten yessoensis, growth with a dynamic energy budget (DEB) model in the mariculture area of Zhangzidao Island

  • Weiwei Jiang
  • Fan Lin
  • Meirong Du
  • Jianguang Fang
  • Jinghui Fang
  • Yaping Gao
  • Xiaoqin Wang
  • Fengxue Li
  • Shipeng Dong
  • Xing Hou
  • Zengjie JiangEmail author
Article
  • 44 Downloads

Abstract

Scallop farming is the main economic activity in the northern parts of China, with a production that has increased quickly since the 1980s. In the present study, a bioenergetics growth model to the Yesso scallop, Patinopecten yessoensis, in the mariculture area of Zhangzidao Island was applied, based on dynamic energy budget (DEB) theory which describes energy flux variation through different compartments of the scallop body. Estimates of most DEB parameters were based on available physiological data or published information, and the two parameters, i.e., detritus contribution to food (αDet) and half-saturation constant for food (XK) were calibrated using datasets in this study. The model relied on two forcing variables: water temperature and food density expressed by different food quantifiers. The sets of data used to validate the model came from a growth experiment performed on P. yessoensis for bottom-sowing culture. The DEB model developed here for P. yessoensis was allowed to simulate growth and reproduction of the scallop in the growing area of the Zhangzidao Island.

Keywords

Patinopecten yessoensis Growth Dynamic energy budget Zhangzidao Island 

Notes

Funding information

The research was supported by the International Science & Technology Cooperation Program of China (No. 2016YFE0112600), Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao) (No. 2018SDKJ0502), Youth Talent Program Supported by Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao) (No. 2018-MFS-T13), China Postdoctoral Science Foundation funded project (No. 2018M642728), and Modern Agro-industry Technology Research System (No. CARS-49).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed by the authors.

References

  1. Agüera A, Ahn IY, Guillaumot C, Danis B (2017) A dynamic energy budget (DEB) model to describe Laternula elliptica (King, 1832) seasonal feeding and metabolism. PLoS One 12(8):e0183848PubMedPubMedCentralGoogle Scholar
  2. Béjaoui-Omri A, Béjaoui B, Harzallah A, Aloui-Béjaoui N, El Bour M, Aleya L (2014) Dynamic energy budget model: a monitoring tool for growth and reproduction performance of Mytilus galloprovincialis in Bizerte Lagoon (Southwestern Mediterranean Sea). Environ Sci Pollut Res Int 21(22):13081–13094PubMedGoogle Scholar
  3. Bernard I, De Kermoysan G, Pouvreau S (2011) Effect of phytoplankton and temperature on the reproduction of the Pacific oyster Crassostrea gigas: investigation through DEB theory. J Sea Res 66(4):349–360Google Scholar
  4. Berthelin C, Kellner K, Mathieu M (2000) Storage metabolism in the Pacific oyster (Crassostrea gigas) in relation to summer mortalities and reproductive cycle (West Coast of France). Comp Biochem Physiol B Biochem Mol Biol 125(3):359–369PubMedGoogle Scholar
  5. Bourlès Y, Alunno-Bruscia M, Pouvreau S, Tollu G, Leguay D, Arnaud C, Goulletquer P, Kooijman SALM (2009) Modelling growth and reproduction of the Pacific oyster Crassostrea gigas: advances in the oyster-DEB model through application to a coastal pond. J Sea Res 62(2–3):62–71Google Scholar
  6. Brigolin D, Maschio GD, Rampazzo F, Giani M, Pastres R (2009) An individual-based population dynamic model for estimating biomass yield and nutrient fluxes through an off-shore mussel (Mytilus galloprovincialis) farm. Estuar Coast Shelf S 82(3):365–376Google Scholar
  7. Brigolin D, Porporato EMD, Prioli G, Pastres R (2017) Making space for shellfish farming along the Adriatic coast. ICES J Mar Sci 74(6):1540–1551Google Scholar
  8. Campbell DE, Newell CR (1998) MUSMOD©, a production model for bottom culture of the blue mussel, Mytilus edulis L. J Exp Mar Biol Ecol 219(1–2):171–203Google Scholar
  9. Chen S, Xiao Y, Wu D (2007) Temperature tolerance research of scallop (Patinopecten yessoensis) in Nanji Island of Zhejiang Province in China. J Zhejiang Ocean Univ 26(2):160–164 (in Chinese)Google Scholar
  10. Christine D, André V, Lam-Höai T, Rougier C, Mazouni N, Lautier J, Collos Y, Le Gall S (2000) Feeding rate of the oyster Crassostrea gigas in a natural planktonic community of the Mediterranean Thau Lagoon. Mar Ecol Prog Ser 205:171–184Google Scholar
  11. Crawford CM, Macleod CKA, Mitchell IM (2003) Effects of shellfish farming on the benthic environment. Aquaculture 224(1–4):117–140Google Scholar
  12. Enriquez-Diaz MR (2004) Variabilité et bioénergétique de la reproduction chez l'huître creuse Crassostrea gigas. Dissertation. Université de Bretagne OccidentaleGoogle Scholar
  13. Filgueira R, Fernández-Reiriz MJ, Labarta U (2009) Clearance rate of the mussel Mytilus galloprovincialis. I. Response to extreme chlorophyll ranges. Cienc Mar 35(4):405–417Google Scholar
  14. Filgueira R, Rosland R, Grant J (2011) A comparison of scope for growth (SFG) and dynamic energy budget (DEB) models applied to the blue mussel (Mytilus edulis). J Sea Res 66(4):403–410Google Scholar
  15. Flye-Sainte-Marie J, Jean F, Paillard C, Ford S, Powell E, Hofmann E, Klinck J (2007) Ecophysiological dynamic model of individual growth of Ruditapes philippinarum. Aquaculture 266(1–4):130–143Google Scholar
  16. Fuji A, Hashizume M (1974) Energy budget for a Japanese common scallop, Patinopecten yessoensis (jay), in Mutsu Bay. Bull Fac Fish Hokkaido Univ 25(1):7–19Google Scholar
  17. Gao Y, Tian B, Yu Y, Sun X, Ma R (2007) The gonadal development and reproductive cycle of Japanese scallop Patinopecten yessoensis in Tahe Bay in Dalian. J Dalian Fish Univ 22(5):335–339 (in Chinese)Google Scholar
  18. Grant J, Bacher C (1998) Comparative models of mussel bioenergetics and their validation at field culture sites. J Exp Mar Biol Ecol 219(1–2):21–44Google Scholar
  19. Guo X (2009) Use and exchange of genetic resources in molluscan aquaculture. Rev Aquac 1:251–259Google Scholar
  20. Handå A, Alver M, Edvardsen CV, Halstensen S, Olsen AJ, Øie G, Reitan KI, Olsen Y, Reinertsen H (2011) Growth of farmed blue mussels (Mytilus edulis L.) in a Norwegian coastal area; comparison of food proxies by DEB modeling. J Sea Res 66(4):297–307Google Scholar
  21. Hatzonikolakis Y, Tsiaras K, Theodorou JA, Petihakis G, Sofianos S, Triantafyllou G (2017) Simulation of mussel Mytilus galloprovincialis growth with a dynamic energy budget model in Maliakos and Thermaikos Gulfs (Eastern Mediterranean). Aquacult Environ Interact 9:371–383Google Scholar
  22. Kooijman SALM (1986) Energy budgets can explain body size relations. J Theor Biol 121(3):269–282Google Scholar
  23. Kooijman SALM (2006) Pseudo-faeces production in bivalves. J Sea Res 56(2):103–106Google Scholar
  24. Kooijman SALM (2000) Dynamic energy and mass budgets in biological systems. Cambridge University Presss, CambridgeGoogle Scholar
  25. Kreeger DA, Newell RIA (1996) Ingestion and assimilation of carbon from cellulolytic bacteria and heterotrophic flagellates by the mussels Geukensia demissa and Mytilus edulis (Bivalvia, Mollusca). Aquat Microb Ecol 11(3):205–214Google Scholar
  26. Lavaud R, Flye-Sainte-Marie J, Jean F, Emmery A, Strand Ø, Kooijman SALM (2014) Feeding and energetics of the great scallop, Pecten maximus, through a DEB model. J Sea Res 94:5–18Google Scholar
  27. Li Q, Osada M, Mori K (2010) Seasonal biochemical variations in Pacific oyster gonadal tissue during sexual maturation. Fish Sci 66(3):502–508Google Scholar
  28. Liu C (2016) The effect of temperature on the fitness characters of bottom sowed yesso scallop. Dissertation. Institute of Oceanology, Chinese Academy of Sciences (in Chinese)Google Scholar
  29. Llewellyn CA, Fishwick JR, Blackford JC (2005) Phytoplankton community assemblage in the English Channel: a comparison using chlorophyll a derived from HPLC-CHEMTAX and carbon derived from microscopy cell counts. J Plankton Res 27(1):103–119Google Scholar
  30. Pouvreau S, Bourles Y, Lefebvre S, Gangnery A, Alunno-Bruscia M (2006) Application of a dynamic energy budget model to the Pacific oyster, Crassostrea gigas, reared under various environmental conditions. J Sea Res 56(2):156–167Google Scholar
  31. Ren JS, Schiel DR (2008) A dynamic energy budget model: parameterisation and application to the Pacific oyster Crassostrea gigas in New Zealand waters. J Exp Mar Biol Ecol 361(1):42–48Google Scholar
  32. Rico-Villa B, Bernard I, Robert R, Pouvreau S (2010) A dynamic energy budget (DEB) growth model for Pacific oyster larvae, Crassostrea gigas. Aquaculture 305(1–4):84–94Google Scholar
  33. Saraiva S, van der Meer J, Kooijman SALM, Sousa T (2011a) DEB parameters estimation for Mytilus edulis. J Sea Res 66(4):289–296Google Scholar
  34. Saraiva S, van der Meer J, Kooijman SALM, Sousa T (2011b) Modelling feeding processes in bivalves: a mechanistic approach. Ecol Model 222(3):514–523Google Scholar
  35. Saraiva S, van der Meer J, Kooijman SALM, Witbaard R, Philippart CJM, Hippler D, Parker R (2012) Validation of a dynamic energy budget (DEB) model for the blue mussel Mytilus edulis. Mar Ecol Prog Ser 463:141–158Google Scholar
  36. Solidoro C, Pastres R, Melaku Canu C, Pellizzato M, Rossi R (2000) Modelling the growth of Tapes philippinarum in Northern Adriatic lagoons. Mar Ecol Prog Ser 199:137–148Google Scholar
  37. Steele S, Mulcahy MF (1999) Gametogenesis of the oyster Crassostrea gigas in southern Ireland. J Mar Biol Assoc UK 79(4):673–686Google Scholar
  38. Troost TA, Wijsman JWM, Saraiva S, Freitas V (2010) Modelling shellfish growth with dynamic energy budget models: an application for cockles and mussels in the Oosterschelde (southwest Netherlands). Philos Trans R Soc B 365(1557):3567–3577Google Scholar
  39. Valavanis VD (2002) Geographic information systems in oceanography and fisheries. Taylor & Francis, London, p 209Google Scholar
  40. van der Veer HW, Cardoso JFMF, van der Meer J (2006) The estimation of DEB parameters for various Northeast Atlantic bivalve species. J Sea Res 56(2):107–124Google Scholar
  41. Velasco LA, Barros J, Guerrero A (2009) Effect of the density on the growth and survival of the Caribbean scallops Argopecten nucleus and Nodipecten nodosus in suspended culture. Aquac Res 40:687–695Google Scholar
  42. Zhang J, Wu W, Liu Y, Lin F, Wang W, Niu Y (2017) A dynamic energy budget (DEB) growth model for Japanese scallop Patinopecten yessoensis cultured in China. J Fish Sci China 24(3):497–506 (in Chinese)Google Scholar
  43. Zhang J, Wu W, Xu D, Ren L, Niu Y, Zhao X (2016) The estimation of dynamic energy budget (DEB) model parameters for scallop Patinopecten yessoensis. J Fish China 40(5):703–710 (in Chinese)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Weiwei Jiang
    • 1
  • Fan Lin
    • 1
  • Meirong Du
    • 1
  • Jianguang Fang
    • 1
    • 2
  • Jinghui Fang
    • 1
  • Yaping Gao
    • 1
  • Xiaoqin Wang
    • 1
  • Fengxue Li
    • 1
  • Shipeng Dong
    • 1
  • Xing Hou
    • 1
  • Zengjie Jiang
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoPeople’s Republic of China
  2. 2.Laboratory for Marine Fisheries Science and Food Production ProcessesQingdao National Laboratory for Marine Science and TechnologyQingdaoPeople’s Republic of China

Personalised recommendations