Advertisement

Precision aquaculture: a short review on engineering innovations

  • Francesca Antonucci
  • Corrado CostaEmail author
Article
  • 41 Downloads

Abstract

Aquaculture is presented as a sustainable alternative to the consumption of wild fish, for example, reducing inputs (such as feed), optimizing outputs, and reducing pollution. Extending to the agricultural framework, in this context, different technologies are being used to diminish those environmental hazards, giving rise to the precision agriculture/aquaculture being this a management concept based on observing, measuring, and responding space/temporal variability of productions. The scope of the precision aquaculture is to apply control-engineering principles to the production, to direct farmers to a better monitoring, control, and documentation of biological processes in fish farms. The aim of this review is to show an overview (enriched by a terms mapping analysis) of the precision aquaculture engineering innovations, with some examples of commercial systems, even if most of them are not specifically addressed in the precision aquaculture framework, in terms of: computer vision for animal monitoring, environmental monitoring tools, and sensor network (i.e., wireless sensor network, and long-range), robotics, and finally data interpretation and decision tools (i.e., algorithms, Internet of Things, and Decision Support Systems). Over the Internet of Things, cyber-physical systems communicate and cooperate with each other and with humans in real-time both internally and across organizational services offered and used by participants of the value chain. To increase the production and ameliorate the fish product quality and animal welfare issues, it is becoming even more important to monitor and control the production process.

Keywords

Wireless sensor network IoT Decision Support System Computer vision 

Notes

Funding information

This work was supported by the sub-project “Tecnologie digitali integrate per il rafforzamento sostenibile di produzioni e trasformazioni agroalimentari (AgroFiliere)” (AgriDigit program) financed by the Ministry of Agricultural, Food, Forestry and Tourism Policies (MiPAAFT) (DM 36503/7305/2018).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

References

  1. Aguzzi J, Costa C, Fujiwara Y, Iwase R, Ramirez-Llorda E, Menesatti P (2009) A novel morphometry-based protocol of automated video-image analysis for species recognition and activity rhythms monitoring in deep-sea fauna. Sensors 9:8438–8455.  https://doi.org/10.3390/s91108438 Google Scholar
  2. Andreopoulou Z (2012) Green Informatics: ICT for green and sustainability. Agrárinformatika 3(2):1–8Google Scholar
  3. Andrewartha SJ, Elliott NG, McCulloch JW, Frappell PB (2015) Aquaculture sentinels: smart-farming with biosensor equipped stock. J Aquac Res Dev 7(1):1–4Google Scholar
  4. Anras MLB, Lagardère JP (2004) Measuring cultured fish swimming behaviour: first results on rainbow trout using acoustic telemetry in tanks. Aquaculture 240(1-4):175-186.  https://doi.org/10.1016/j.aquaculture.2004.02.019
  5. AQ1 system (2017) http://www.aq1systems.com/. Accessed on 10 July 2019
  6. Atoum Y, Srivastava S, Xiaoming L (2015) Automatic feeding control for dense aquaculture fish tanks. IEEE Signal Process Lett 22(8):1089–1093.  https://doi.org/10.1109/LSP.2014.2385794 Google Scholar
  7. Ayub MZ, Kushairi S, Latif AA (2015) A new mobile robotic system for intensive aquaculture industries. J Appl Sci Agric 10(8):1–7Google Scholar
  8. Berckmans D (2014) Precision livestock farming technologies for welfare management in intensive livestock systems. Scientific and Technical Review of the Office International des Epizooties 33(1):189–196Google Scholar
  9. Blanchard EA, Loxton R, Rehbock V (2013) A computational algorithm for a class of non-smooth optimal control problems arising in aquaculture operations. Appl Math Comput 219(16):8738–8746.  https://doi.org/10.1016/j.amc.2013.02.070 Google Scholar
  10. Bourke G, Stagnitti F, Mitchell B (1993) A decision support system for aquaculture research and management. Aquac Eng 12(2):111–123.  https://doi.org/10.1016/0144-8609(93)90020-C Google Scholar
  11. Cadieux S, Lalonde F, Michaud F (2000) Intelligent system for automated fish sorting and counting. International Conference on Intelligent Robots and Systems (IROS). IEEE/RSJ, Takamatsu, Japan, pp 1279-1284.  https://doi.org/10.1109/IROS.2000.893195
  12. Carrera P, Churnside JH, Boyra G, Marques V, Scalabrin C, Uriarte A (2006) Comparison of airborne lidar with echosounders: a case study in the coastal Atlantic waters of southern Europe. ICES J Mar Sci 63:1736–1750.  https://doi.org/10.1016/j.icesjms.2006.07.004 Google Scholar
  13. Chang B, Zhang X (2013) Aquaculture monitoring system based on fuzzy-PID algorithm and intelligent sensor networks. In Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), 2013. IEEE, pp 385-388.  https://doi.org/10.1109/CSQRWC.2013.6657435
  14. Chavan MS, Patil MVP, Chavan S, Sana S, Shinde C (2018) Design and implementation of IOT based real time monitoring system for aquaculture using raspberry pi. Int J Recent Innov Trends Comput Commun 6(3):159–161Google Scholar
  15. Chen Y, Zhen Z, Yu H, Xu J (2017) Application of fault tree analysis and fuzzy neural networks to fault diagnosis in the Internet of Things (IoT) for aquaculture. Sensors 17(1):153.  https://doi.org/10.3390/s17010153 Google Scholar
  16. Churnside JH (2003) A comparison of lidar and echosounder measurements of fish schools in the Gulf of Mexico. ICES J Mar Sci 60(1):147–154.  https://doi.org/10.1006/jmsc.2002.1327 Google Scholar
  17. Costa C, Scardi M, Vitalini V, Cataudella S (2009) A dual camera system for counting and sizing Northern Bluefin Tuna (Thunnus thynnus; Linnaeus, 1758) stock, during transfer to aquaculture cages, with a semi automatic Artificial Neural Network tool. Aquaculture 291:161–167.  https://doi.org/10.1016/j.aquaculture.2009.02.013 Google Scholar
  18. Costa C, Schurr U, Loreto F, Menesatti P, Carpentier S (2019) Plant phenotyping research trends, a science mapping approach. Front Plant Sci 9:1933Google Scholar
  19. de Mattos BO, Nascimento Filho ECT, Barreto KA, Braga LGT, Fortes-Silva R (2016) Self-feeder systems and infrared sensors to evaluate the daily feeding and locomotor rhythms of Pirarucu (Arapaima gigas) cultivated in outdoor tanks. Aquaculture 457:118–123.  https://doi.org/10.1016/j.aquaculture.2016.02.026 Google Scholar
  20. Duarte S, Reig L, Oca J (2009) Measurement of sole activity by digital image analysis. Aquac Eng 41(1):22–27.  https://doi.org/10.1016/j.aquaeng.2009.06.001 Google Scholar
  21. Dupont C, Cousin P, Dupont S (2018) IoT for aquaculture 4.0 smart and easy-to-deploy real-time water monitoring with IoT. In 2018 Global Internet of Things Summit (GIoTS) (pp. 1-5). IEEE.  https://doi.org/10.1109/GIOTS.2018.8534581
  22. Encinas C, Ruiz E, Cortez J, Espinoza A (2017) Design and implementation of a distributed IoT system for the monitoring of water quality in aquaculture. In Wireless Telecommunications Symposium (WTS), 2017. IEEE, pp 1-7.  https://doi.org/10.1109/WTS.2017.7943540
  23. Espinosa-Faller FJ, Rendón-Rodríguez GE (2012) A ZigBee wireless sensor network for monitoring an aquaculture recirculating system. J Appl Res Technol 10(3):380–387Google Scholar
  24. Føre M, Frank K, Norton T, Svendsen E, Alfredsen JA, Dempster T, Eguiraun H, Watson W, Stahl A, Magne Sunde L, Schellewald C, Skøien KR, Alver MO, Berckmans D (2017a) Precision fish farming: a new framework to improve production in aquaculture. Biosyst Eng 173:176–193.  https://doi.org/10.1016/j.biosystemseng.2017.10.014 Google Scholar
  25. Føre M, Frank K, Dempster T, Alfredsen JA, Høy E (2017b) Biomonitoring using tagged sentinel fish and acoustic telemetry in commercial salmon aquaculture: a feasibility study. Aquac Eng 78:163–172.  https://doi.org/10.1016/j.aquaeng.2017.07.004 Google Scholar
  26. Friedland KD, Ama-Abasi D, Manning M, Clarke L, Kligys G, Chambers RC (2005) Automated egg counting and sizing from scanned images: rapid sample processing and large data volumes for fecundity estimates. J Sea Res 54:307–316.  https://doi.org/10.1016/j.seares.2005.06.002 Google Scholar
  27. Grubich JR, Rice AN, Westneat MW (2008) Functional morphology of bite mechanics in the great barracuda (Sphyraena barracuda). Zoology 111(1):16–29.  https://doi.org/10.1016/j.zool.2007.05.003 Google Scholar
  28. Harun A, Ndzi DL, Ramli MF, Shakaff AYM, Ahmad MN, Kamarudin LM, Zakaria A, Yang Y (2012) Signal propagation in aquaculture environment for wireless sensor network applications. Prog Electromagn Res 131:477–494Google Scholar
  29. Kawabe R, Kawano T, Nakano N, Yamashita N, Hiraishi T, Naito Y (2003) Simultaneous measurement of swimming speed and tail beat activity of free-swimming rainbow trout Oncorhynchys mykiss using an acceleration data-logger. Fish Sci 69:959–965.  https://doi.org/10.1046/j.1444-2906.2003.00713.x Google Scholar
  30. Lasi H, Fettke P, Kemper HG, Feld T, Hoffmann M (2014) Industry 4.0. Bus Inf Syst Eng 6(4):239–242.  https://doi.org/10.1007/s12599-014-0334-4 Google Scholar
  31. Lee WP, Osman MA, Talib AZ, Ogier JM, Yahya K (2014) Tracking multiple fish in a single tank using an improved particle filter. Adv Comput Sci Appl 279:799–804.  https://doi.org/10.1007/978-3-642-41674-3_114 Google Scholar
  32. Liang J, Yang K, Xia M, Zhang X, Lei X, Zheng Y, Tan D (2006) Monte Carlo simulation for modulated pulse bathymetric light detecting and ranging systems. J Opt 8(5):415–422Google Scholar
  33. Lindblom J, Lundström C, Ljung M, Jonsson A (2016) Promoting sustainable intensification in precision agriculture: review of decision support systems development and strategies. Precis Agric 18(3):309–331.  https://doi.org/10.1007/s11119-016-9491-4 Google Scholar
  34. Liu X, Cheng L (2012) Wireless sensor network based on ZigBee in aquaculture. In Advances in Electronic Commerce, Web Application and Communication. Springer, Berlin, Heidelberg, pp 553-558.  https://doi.org/10.1007/978-3-642-28655-1_87
  35. Liu YT, Lin BY, Yue XF, Cai ZX, Yang ZX, Liu WH, Huang SY, Lu LJ, Peng JW, Chen JY (2018) A solar powered long range real-time water quality monitoring system by LoRaWAN. In Wireless and Optical Communication Conference (WOCC), 2018 27th. IEEE, pp 1-2.  https://doi.org/10.1109/WOCC.2018.8373792
  36. Luna FDVB, de la Rosa Aguilar E, Naranjo JS, Jagüey JG (2017) Robotic System for Automation of Water Quality Monitoring and Feeding in Aquaculture Shadehouse. IEEE Trans Syst Man Cybern Syst Hum 47(7):1575–1589.  https://doi.org/10.1109/TSMC.2016.2635649 Google Scholar
  37. Maggio E, Cavallaro A (2011) Video Tracking. John Wiley and Sons Ltd, Chichester, p 292Google Scholar
  38. Martinez-de Dios JR, Serna C, Ollero A (2003) Computer vision and robotics techniques in fish farms. Robotica 21(3):233–243.  https://doi.org/10.1017/S0263574702004733 Google Scholar
  39. Mathiassen JR, Misimi E, Bondo M, Veliyulin E, Ostvik SO (2011) Trends in application of imaging technologies to inspection of fish and fish products. Trends Food Sci Technol 22:257–275.  https://doi.org/10.1016/j.tifs.2011.03.006 Google Scholar
  40. Mathisen BM, Haro P, Hanssen B, Björk S, Walderhaug S (2016) Decision support systems in fisheries and aquaculture: a systematic review. arXiv preprint arXiv:1611.08374Google Scholar
  41. Matsumoto J, Urakawa S, Takamura Y, Malcher-Lopes R, Hori E, Tomaz C, Ono T, Nishijo H (2013) A 3D-video-based computerized analysis of social and sexual interactions in rats. PLoS One 8(10):e78460.  https://doi.org/10.1371/journal.pone.0078460 Google Scholar
  42. Melvin GD (2016) Observations of in situ Atlantic bluefin tuna (Thunnus thynnus) with 500-kHz multibeam sonar. ICES J Mar Sci 73(8):1975–1986.  https://doi.org/10.1093/icesjms/fsw077 Google Scholar
  43. Menesatti P, Costa C, Antonucci F, Steri R, Pallottino F, Catillo G (2014) A low-cost stereovision system to estimate size and weight of live sheep. Comput Electron Agric 103:33–38.  https://doi.org/10.1016/j.compag.2014.01.018 Google Scholar
  44. Nucci ME, Costa C, Scardi M, Cataudella S (2010) Preliminary observations on bluefin tuna (Thunnus thynnus, Linnaeus 1758) behaviour in captivity. J Appl Ichthyol 25:95–96.  https://doi.org/10.1111/j.1439-0426.2009.01359.x Google Scholar
  45. Ogunlela AO (2014) Development and Performance Evaluation of an Automatic Fish Feeder. In Montreal, Quebec Canada July 13–July 16, 2014. American Society of Agricultural and Biological Engineers, p 1. doi:  https://doi.org/10.13031/aim.20141895016
  46. Pallottino F, Steri R, Menesatti P, Antonucci F, Costa C, Figorilli S, Catillo G (2015) Comparison between manual and stereovision body traits measurements of Lipizzan horses. Comput Electron Agric 118:408–413.  https://doi.org/10.1016/j.compag.2015.09.019 Google Scholar
  47. Pallottino F, Biocca M, Nardi P, Figorilli S, Menesatti P, Costa C (2018) Science mapping approach to analyze the research evolution on precision agriculture: world, EU and Italian situation. Precis Agric 19:1011–1026.  https://doi.org/10.1007/s11119-018-9569-2 Google Scholar
  48. Papadakis VM, Papadakis IE, Lamprianidou F, Glaropoulos A, Kentouri M (2012) A computer-vision system and methodology for the analysis of fish behaviour. J Aquac Eng 46:53–59.  https://doi.org/10.1016/j.aquaeng.2011.11.002 Google Scholar
  49. Parra L, Sendra S, García L, Lloret J (2018a) Design and deployment of low-cost sensors for monitoring the water quality and fish behaviour in aquaculture tanks during the feeding process. Sensors 18(3):750.  https://doi.org/10.3390/s18030750 Google Scholar
  50. Parra L, Lloret G, Lloret J, Rodilla M (2018b) Physical sensors for precision aquaculture: a review. IEEE Sensors J 18(10):3915–3923.  https://doi.org/10.1109/JSEN.2018.2817158 Google Scholar
  51. Patullo BW, Jolley-Rogers G, Macmillan DL (2007) Video tracking in the extreme: video analysis for nocturnal underwater animal movement. Behav Res Ther 39(4):783–788.  https://doi.org/10.3758/BF03192969 Google Scholar
  52. Pentair (2018) https://pentairaes.com/arvo-tec-robot-feeding-system.html. Accessed on 10 July 2019
  53. Pinkiewicz TH, Purser GJ, Williams RN (2011) A computer vision system to analyse the swimming behaviour of farmed fish in commercial aquaculture facilities: a case study using cage-held Atlantic salmon. Aquac Eng 45(1):20–27.  https://doi.org/10.1016/j.aquaeng.2011.05.002 Google Scholar
  54. Primavera JH (2006) Overcoming the impacts of aquaculture on the coastal zone. Ocean Coast Manag 49(9–10):531–545.  https://doi.org/10.1016/j.ocecoaman.2006.06.018 Google Scholar
  55. Ravalli A, Rossi C, Marrazza G (2017) Bio-inspired fish robot based on chemical sensors. Sensors Actuators B Chem 239:325–329.  https://doi.org/10.1016/j.snb.2016.08.030 Google Scholar
  56. Reshma B, Kumar SS (2016) Precision aquaculture drone algorithm for delivery in sea cages. In Engineering and Technology (ICETECH), 2016 IEEE International Conference on. IEEE, pp 1264-1270.  https://doi.org/10.1109/ICETECH.2016.7569455
  57. Ruff BP, Marchant JA, Frost AR (1995) Fish sizing and monitoring using a stereo image-analysis system applied to fish farming. Aquac Eng 14:155–173.  https://doi.org/10.1016/0144-8609(94)P4433-C Google Scholar
  58. Saberioon M, Gholizadeh A, Cisar P, Pautsina A, Urban J (2017) Application of machine vision systems in aquaculture with emphasis on fish: state-of-the-art and key issues. Rev Aquac 9(4):369–387.  https://doi.org/10.1111/raq.12143 Google Scholar
  59. Shi B, Sreeram V, Zhao D, Duan S, Jiang J (2018) A wireless sensor network-based monitoring system for freshwater fishpond aquaculture. Biosyst Eng 172:57–66.  https://doi.org/10.1016/j.biosystemseng.2018.05.016 Google Scholar
  60. Simbeye DS, Yang SF (2014) Water quality monitoring and control for aquaculture based on wireless sensor networks. J Netw 9(4):840.  https://doi.org/10.4304/jnw.9.4.840-849 Google Scholar
  61. Simbeye DS, Zhao J, Yang S (2014) Design and deployment of wireless sensor networks for aquaculture monitoring and control based on virtual instruments. Comput Electron Agric 102:31–42.  https://doi.org/10.1016/j.compag.2014.01.004 Google Scholar
  62. Sintef (2019) https://www.sintef.no/en/ocean/aquaculture. Accessed on 10 July 2019
  63. Soliveres E, Poveda P, Estruch VD, Pérez-Arjona I, Puig V, Ordoñez P, Ramis J, Espinosa V (2017) Monitoring fish weight using pulseecho waveform metrics. Aquac Eng 77:125–131.  https://doi.org/10.1016/j.aquaeng.2017.04.002 Google Scholar
  64. Sowande OS, Sobola OS (2008) Body measurements of West African dwarf sheep as parameters for estimation of live weight. Trop Anim Health Prod 40(6):433–439.  https://doi.org/10.1007/s11250-007-9116-z Google Scholar
  65. Stankovic J (2008) When sensor and actuator networks cover the world. ETRI J 30(5):627–633.  https://doi.org/10.4218/etrij.08.1308.0099 Google Scholar
  66. Tanveer M, Balasubramanian S, Sivakumar M, Manimehalai N, Jagan P (2018) A technical review on feeders in aquaculture. Int J Fish Aquat Stud 6(4):305–309Google Scholar
  67. Torisawa S, Kadota M, Komeyama K, Suzuki K, Takagi T (2011) A digital stereo-video camera system for three-dimensional monitoring of free-swimming Pacific bluefin tuna, Thunnus orientalis, cultured in a net cage. Aquat Living Resour 24(2):107–112.  https://doi.org/10.1051/alr/2011133 Google Scholar
  68. van Eck NJ, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84(2):523–538Google Scholar
  69. Viscido SV, Parrish JK, Grünbaum D (2004) Individual behaviour and emergent properties of fish schools: a comparison of observation and theory. Mar Ecol Prog Ser 273:239–249.  https://doi.org/10.3354/meps273239 Google Scholar
  70. Von Borstel FD, Suárez J, de la Rosa E, Gutiérrez J (2013) Feeding and water monitoring robot in aquaculture greenhouse. Ind Robot 40(1):10–19.  https://doi.org/10.1108/01439911311294219 Google Scholar
  71. Wallat GK, Luzuriaga DA, Balaban MO, Chapman FA (2002) Analysis of skin color development in live goldfish using a color machine vision system. N Am J Aquac 64:79–84.  https://doi.org/10.1577/1548-8454(2002)064<0079:AOSCDI>2.0.CO;2 Google Scholar
  72. XpertSea (2019) https://www.xpertsea.com/solution. Accessed on 10 July 2019
  73. Xu J, Liu Y, Cui S, Miao X (2006) Behavioural responses of tilapia (Oreochromis niloticus) to acute fluctuations in dissolved oxygen levels as monitored by computer vision. Acquac Eng 35(3):207–217.  https://doi.org/10.1016/j.aquaeng.2006.02.004 Google Scholar
  74. Yang YS, Lee KH, Ji SC, Jeong SJ, Kim KM, Park SW (2011) Measurement of size and swimming speed of Bluefin tuna (Thunnus thynnus) using by a stereo vision method. J Korean Soc Fish Technol 47(3):214–221.  https://doi.org/10.3796/KSFT.2011.47.3.214 Google Scholar
  75. Zhang Y, Hua J, Wang YB (2013) Application effect of aquaculture IOT system. In Applied Mechanics and Materials. Trans Tech Publications, Vol. 303, pp 1395-1401.  https://doi.org/10.4028/www.scientific.net/AMM.303-306.1395
  76. Zion B (2012) The use of computer vision technologies in aquaculture–a review. Comput Electron Agric 88:125–132.  https://doi.org/10.1016/j.compag.2012.07.010 Google Scholar
  77. Zion B, Doitch N, Ostrovsky V, Alchanatis V, Segev R, Barki A, Karplus I (2006) Ornamental fish fry counting by image processing. Agricultural Research Organization, Bet DaganGoogle Scholar
  78. Zion B, Alchanatis V, Ostrovsky V, Bark IA, Karplus I (2007) Real-time underwater sorting of edible fish species. Comput Electron Agric 56:34–45.  https://doi.org/10.1016/j.compag.2006.12.007 Google Scholar
  79. Zion B, Alchanatis V, Ostrovsky V, Barki A, Karplus I (2008) Classification of guppies’ (Poecilia reticulata) gender by computer vision. Aquac Eng 38(2):97–104.  https://doi.org/10.1016/j.aquaeng.2008.01.002 Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Consiglio per la Ricerca in Agricoltura e l’analisi dell’Economia Agraria (CREA)-Centro di Ricerca Ingegneria e Trasformazioni AgroalimentariMonterotondoItaly

Personalised recommendations