Advertisement

Aquaculture International

, Volume 27, Issue 6, pp 1787–1800 | Cite as

Autogenous bacterins cross-protection as a trial for Streptococcosis control in Oreochromis niloticus

  • Amany M. DiabEmail author
  • R. H. Khalil
  • M. Khallaf
Article
  • 52 Downloads

Abstract

The present work investigated experimentally a rapid, effective and inexpensive control to streptococcosis, and the role of Streptococcus iniae as a major cause for mass mortalities of cultured Oreochromis niloticus in Kafrelsheikh, Egypt, in the summer of 2017; mass mortality was associated with poor water quality, and cultured naturally infected O. niloticus showed corneal opacity, congestion, and deep haemorrhagic ulceration in the dorsal region. S. iniae was identified as a causative agent by traditional and PCR techniques. The highest incidence of S. iniae was in the liver. Choosing vaccination as a control was experimentally investigated; the superiority of Streptococcus agalactiae FKC bacterin was related to the antibody titre, which was higher than S. iniae bacterin. The relative level of protection values were 79% and 23% in fish challenged with S. agalactiae and vaccinated with FKC of either S. agalactiae or S. iniae, respectively. These values were 56% and 74% in fish challenged with S. iniae and vaccinated with FKC of either S. agalactiae or S.i niae, respectively. In conclusions, autogenous bacterins of S. agalactiae or S.iniae induced cross-protection against S. agalactiae and S. iniae, in O. niloticus. The protection was superior to a S. agalactiae FKC vaccine, which could be a useful means for the prevention and control of streptococcosis.

Keywords

PCR Streptococcosis Tilapia Vaccine Water quality 

Abbreviations

FKC

Formalin-killed cells

LD50

The median lethal dose

O. niloticus

Oreochromis niloticus

S. agalactiae

Streptococcus agalactiae

S. iniae

Streptococcus iniae

Notes

Acknowledgements

The authors are grateful to Aquaculture engineering Master Ghanem, who has a private fish farm.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international guidelines for the care and use of animals were followed by the authors.

References

  1. Amal MNA, Zamri-Saad M (2011) Streptococcosis in tilapia (Oreochromis niloticus): a review. Pertanika J Trop Agric Sci 34(2):195–206Google Scholar
  2. Anderson JIW, Conroy DA (1970) Vibrio disease in marine fishes. Spec Publ Am Fish Soc 5:266–272Google Scholar
  3. APHA (American Public Health Association) (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, New YorkGoogle Scholar
  4. Austin B, Austin D (2007) Bacterial fish pathogens disease of farmed and wild fish (7th revised ed). Chichester: Springer-Praxis PublishingGoogle Scholar
  5. Bachrach G, Zlotkin A, Hurvitz A, Evans DL, Eldar A (2001) Recovery of Streptococcus iniae from diseased fish previously vaccinated with a streptococcus vaccine. Appl Environ Microbiol 67:3756–3758CrossRefGoogle Scholar
  6. Bromage ES, Owens L (2002) Infection of barramundi Lates calcarifer with Streptococcus iniae: effects of different routes of exposure. Dis Aquat Org 52:199–205CrossRefGoogle Scholar
  7. Channarong R, Pattanapon K, Nopadon P (2011) Effect of water temperature on susceptibility to Streptococcus agalactiae serotype infection in Nile tilapia (Oreochromis niloticus). Thai J Vet Med 41(3):309–314Google Scholar
  8. Chettri JK, Deshmukh S, Holten-Anderssen L, Jaafar RM, Dalsgaard I, Buchman K (2013) Comparative evaluation of administration methods for a vaccine protecting rainbow trout against Yersinia ruckeri O1 biotype 2 infection. Vet Immunol Immunopathol 154:42–49CrossRefGoogle Scholar
  9. Chettri JK, Jaafar RM, Skov J, Kania PW, Dalsgaard I, Buchman K (2015) Booster immersion vaccination using diluted Yersinia ruckeri bacterin confers protection against ERM in rainbow trout. Aquaculture. 440:1–5CrossRefGoogle Scholar
  10. Conroy DA, Hermann LR (1981) Text book of fish diseases. T. F. H. Pub, West SylvaniaGoogle Scholar
  11. Craig AS, Vandenberg GW, Désormeaux A, Klesius PH, Evans JJ (2006) Efficacy of a Streptococcus iniae modified bacterin delivered using Oralject™ technology in Nile tilapia (Oreochromis niloticus). Aquaculture. 255:151–156CrossRefGoogle Scholar
  12. Darwish AM (2007) Laboratory efficacy of florfenicol against Streptococcus iniae infection in sunshine bass. J Aquat Anim Health 19:1–7CrossRefGoogle Scholar
  13. El-Sayed AFM (2006) Tilapia culture. Oceanography Department, Faculty of Science, Alexandria University, Egypt. CABI Publishing. www.cabi-publishing.org. Accessed 5 July 2018
  14. Eurell TE, Lewis SDH, Grumbles LC (1978) Comparison of selected diagnostic tests for detection of motile Aeromonas septicemia in fish. Am J Vet Res 39(8):1384–1386PubMedGoogle Scholar
  15. Evans JJ, Klesius PH, Shoemaker CA (2004) Efficacy of Streptococcus agalactiae (group B) vaccine in tilapia (Oreochromis niloticus) by intraperitoneal and bath immersion administration. Vaccine. 22:3769–3773CrossRefGoogle Scholar
  16. Evensen Ø, Leong JA (2013) DNA vaccines against viral diseases of farmed fish. Fish Shellfish Immunol 35:1751–1758CrossRefGoogle Scholar
  17. Eyngor M, Tekoha Y, Shapira R, Hurvitz A, Zlotkin A, Lublin A, Eldar A (2008) Emergence of novel Streptococcus iniae exopolysaccharide-producing strains following vaccination with non-producing strains. Appl Environ Microbiol 74:6892–6897CrossRefGoogle Scholar
  18. Figueiredo HCP, Carneiro DO, Faria FC, Costa GM (2006) Streptococcus agalactiae associado à meningoencefalite e infecção sistêmica em tilápia-do-nilo (Oreochromis niloticus) no Brasil. Arq Bras Med Vet Zootec. [online]. 58(4):678-680. ISSN 0102-0935.  https://doi.org/10.1590/S0102-09352006000400036 CrossRefGoogle Scholar
  19. Firdaus-Nawi M, Sabri MY, Hanan Y, Siti-Zahrah A, Zamri-Saad M (2013) Efficacy of feed-based adjuvant vaccine against Streptococcus agalactiae in Oreochromis spp. in Malaysia. Aquac Res 45:87–96.  https://doi.org/10.1111/j.1365-2109.2012.03207.x CrossRefGoogle Scholar
  20. Hossain MMM, Ehsan A, Rahman MA, Chowdhury MBR, Haq M (2012) Responses of monosex Nile tilapia (Oreochromis niloticus) to intraperitoneal challenge by Streptococcus iniae after vaccination with ghosts of the bacterium. Bangl Vet 29(1):31–37.  https://doi.org/10.3329/bvet.v29i1.11889 CrossRefGoogle Scholar
  21. Huu T, Nguyen KK, Kazuma Y (2001) Immunohistochemical examination of experimental Streptococcus iniae infection in Japanese flounder Paralichthys olivaceus. Fish Pathol 36(3):169–178 9 © 2001 the Japanese Society of Fish PathologyCrossRefGoogle Scholar
  22. Ismail MS, Siti-Zahrah A, Syafiq MRM, Amal MNA, Firdaus-Nawil M, Zamri-Saad M (2016) Feed-based vaccination regime against streptococcosis in red tilapia, Oreochromis niloticus x Oreochromis mossambicus. BMC Vet Res 12:194.  https://doi.org/10.1186/s12917-016-0834-1 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kai-yu W, De-fang C, Ling-yuan H, Hai L, Jun W, Dan X, Yi G, Ze-xiao Y, Wei-ming L (2013) Isolation and characterization of Streptococcus agalactiae from Nile tilapia Oreochromis niloticus in China. Afr J Microbiol Res 7(4):317–323CrossRefGoogle Scholar
  24. Karunasagar I, Rosalind G (1991) Immunological response of the Indian major carps to Aeromonas hydrophila vaccine. J Fish Dis 14:413–417CrossRefGoogle Scholar
  25. Klesius PH, Shoemaker CA, Evans JJ (1999) Efficacy of a killed S. iniae vaccine in tilapia (O. niloticus). Bull Eur Ass Fish Pathol 19:39–41 In P H Klesius et al. (2000). Aquaculture. 188: 237–246. www.elsevier.nlrlocateraqua-online. Accessed 7 July 2018
  26. Klesius PH, Shoemaker CA, Evans JJ (2000) Efficacy of single and combined Streptococcus iniae isolate vaccine administered by intraperitoneal and intramuscular routes in tilapia Oreochromis niloticus. Aquaculture. 188:237–246CrossRefGoogle Scholar
  27. Lamers C, De Haas M, Van Muiswinkel W (1985) Humoral response and memory formation in carp after injection of Aeromonas hydrophila bacterin. Dev Comp Immunol 9(1):65–75.  https://doi.org/10.1016/0145-305X(85)90060-6 CrossRefPubMedGoogle Scholar
  28. Liu G, Zhu J, Chen K, Gao T, Yao H, Liu Y, Zhang W, Lu C (2016) Development of Streptococcus agalactiae vaccines for tilapia. Dis Aquat Org 122:163–170.  https://doi.org/10.3354/dao03084 CrossRefPubMedGoogle Scholar
  29. Mian GF, Godoy DT, Leal CA, Yuhara TY, Costa GM, Figueiredo HC (2009) Aspects of the natural history and virulence of S. agalactiae infection in Nile tilapia. Vet Microbiol 136(1–2):180–183CrossRefGoogle Scholar
  30. Munang’andu HM, Mutoloki S, Evensen O (2014) Acquired immunity and vaccination against infectious pancreatic necrosis virus of salmon. Dev Comp Immunol 43:184–196CrossRefGoogle Scholar
  31. Naraid S, Akkarawit I (2011) Efficacy of inactivated Streptococcus iniae vaccine and protective effect of -(1,3/1,6)–glucan on the effectiveness of vaccine in red tilapia Oreochromis niloticus x O. mossambicus. Songklanakarin J Sci Technol 33:143–149 http://www.sjst.psu.ac.th. Accessed 10 July 2018
  32. Naraid S, Nirut S, Nopparat T, Terutoyo Y, Toshiaki I, Ronald L, Thune CT, Kidchakan S (2010) Streptococcus iniae infection in cultured Asian sea bass (Lates calcarifer) and red tilapia (Oreochromis sp.) in southern Thailand. Songklanakarin J Sci Technol 32(4):341–348Google Scholar
  33. Newman SG, Majnarich JJ (1982) Direct immersion vaccination of juvenile rainbow trout, Salmo gairdneri and juvenile Coho Salmo Oncorhynchus kisutch with Yersinia ruckeri bacterin. J fish Dis 3:339–341CrossRefGoogle Scholar
  34. Oxoid Manual (1982) Oxoid manual, 5th edn. Published by Oxoid Limited Hampshire, EnglandGoogle Scholar
  35. Plumb JA (1997) Infectious disease of tilapia. In: Tilapia aquaculture in the Americas. 1: 212-228. In: Costa-Pierce BA, Rakocy JE (eds) . The World Aquaculture Society. In Wade, Watanabe et al. (2002).Rev Fish Sci 10(3): 465–498, Baton Rouge.  https://doi.org/10.1080/20026491051758 CrossRefGoogle Scholar
  36. Popma T, Masser M (1999) Tilapia life story and biology. SRAC Publication No 283. http://aquaculture.ca.uky.edu/publication/tilapia-life-history-and-biology. Accessed 23 July 2018
  37. Rika S, Daniel R, Tri L, Ngili GY (2015) The making of vaccine from bacteria to prevent Streptococcosis disease in tilapia (Oreochromis niloticus): study at Sentani lake, Jayapura regency-Indonesia. J Chem Pharm Res 7(6):554–561 Available online www.jocpr.com. Accessed 26 July 2018
  38. Rombout JHWM, Van den Berg AA (1989) Immunological importance of the second gut segment of carp. I. Uptake and processing of antigens by epithelial cells and macrophages. J Fish Biol 35:13–22CrossRefGoogle Scholar
  39. Sajjad D, Mostafa A, Meysam D (2012) Efficacy of formalin-killed, heat-killed and lipopolysaccharide vaccines against motile Aeromonads infection in rainbow trout (Oncorhynchus mykiss). Glob Vet 9(4):409–415.  https://doi.org/10.5829/idosi.gv.2012.9.4.6591 CrossRefGoogle Scholar
  40. Sakai M, Aoki T, Kitao T, Rohovec JS, Fryer JL (1984) Comparison of the cellular immune response of fish vaccinated by immersion and injection of Vibrio anguilarum. Bull Jpn Soc Sci Fish 50(7):1187–1192CrossRefGoogle Scholar
  41. Salvador R, Müller EE, Leonhardt JH, Pretto-Giordano LG, Dias JA, Freitas JC, Moreno AM (2003) Isogamete de Streptococcus spy DE tilapia do Nilo (Oreochromis niloticus) e qualitied ague de toques rede an Regio Norte do Estacode Paraná, Brasil. Seminar: Ciancia's Agrarians. 24:35–42. In Lucienne et al. (2010). Braz. Arch. Biol. Technol. 53(1): Curitiba.  https://doi.org/10.1590/S1516-89132010000100011. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132010000100011 CrossRefGoogle Scholar
  42. Salvador R, Ernst EM, Julio César de Freitas, Julio HL, Lucienne G, Pretto-Giordano Juliana AD (2005) Isolation and characterization of Streptococcus spp. group B in Nile tilapias (Oreochromis niloticus) reared in haps nets and earth nurseries in the northern region of Parana state, Brazil. Ciência Rural Santa Maria 35(6):1374–1378. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132010000100011. Accessed 10 July 2018
  43. Silva BC, Martins ML, Jatoba A, Neto CCB, Vieira FN, Pereira GV, Jeronimo GT, Seiffert WQ, Mourino JLP (2009) Hematological and immunological responses of Nile tilapia after polyvalent vaccine administration by different routes. Pesq Vet Brasil 29:874–880CrossRefGoogle Scholar
  44. Sommerset I, Skern R, Biering E, Bleie H, Fiksdal IU, Grove S, Nerland AH (2005) Protection against Atlantic halibut Nodavirus in turbot is induced by recombinant capsid protein vaccination but not following DNA vaccination. Fish Shellfish Immunol 18:13–29CrossRefGoogle Scholar
  45. SPSS (1997) Statistical package for the social sciences revisions 6. SPSS Inc, ChicagoGoogle Scholar
  46. Thune RL, Collins LA, Penta MP (1997) A comparison of immersion, immersion/oral combination and injection methods for the vaccination of channel catfish, Ictalurus punctatus against Edwardsiella ictaluri. J World Aquacult Soc 28:193–201CrossRefGoogle Scholar
  47. Whitman KA (2004) Finfish and shellfish bacteriology manual; techniques and procedures. Iowa State Press, Iowa ISBN 0-8138-1952-0Google Scholar
  48. WHO (1984) Guidelines for drinking-water quality. World Health Organization, GenevaGoogle Scholar
  49. Ye X, Li J, Lu M, Deng G, Jiang X, Tian Y, Quan Y, Jian Q (2011) Identification and molecular typing of Streptococcus agalactiae isolated from pond-cultured tilapia in China. Fish Sci 77:623–632CrossRefGoogle Scholar
  50. Zamri-Saad M, Amal MNA, Siti-Zahrah A, Zulkafli AR (2014) Control and prevention of streptococcosis in cultured tilapia in Malaysia: a review. Pertanika J Trop Agric Sci 37:389–410Google Scholar
  51. Zapata AG, Torroba M, Varas A, Jiménez E (1997) Immunity in fish larvae. In: Gudding R, Lillehaug A, Midtlyng PJ, Brown F (eds) Fish vaccinology: developments in biological standardization, vol 90. Karger, Basel, pp 23–32Google Scholar
  52. Zlotkin A, Hershko H, Eldar A (1998) Possible transmission of Streptococcus iniae from wild fish to cultured marine fish. Appl Environ Microbiol 64:4065–4067PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Aquatic Microbiology, Faculty of Aquatic and Fisheries SciencesKafrelsheikh UniversityKafr El-SheikhEgypt
  2. 2.Department of Poultry and Fish Diseases, Faculty of Veterinary MedicineAlexandria UniversityAlexandriaEgypt
  3. 3.Department of Aquatic Animal Medicine and Management Department, Faculty of Veterinary MedicineSadat City UniversitySadat CityEgypt

Personalised recommendations