Skip to main content

Advertisement

Log in

Two-stage cultivation of the marine microalga Chlorella salina for starch and carbohydrate production

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Growing concern and awareness towards environmental issues, such as plastic pollution, have encouraged scientific focus on microalgae as a potential feedstock for thermoplastic starch production. Given their unique ability to utilize wastewater nutrients, microalgae are suitable to be used in wastewater treatment. In first-stage cultivation, Chlorella salina was grown in a Conway medium at 30 °C and exposed to red light under a photoperiod of 24:0 h light–dark cycle to maximize biomass production. The microalgal biomass harvested from the first stage was used as the inoculum for second-stage cultivation. The effects of photoperiod, CO2 concentration, and nutrient limitation were investigated. Cultivation using wastewater was compared with the synthetic medium for starch and carbohydrate accumulation. C. salina cultivated under 12:12 h light–dark cycle significantly accumulated the highest starch and carbohydrate with respective concentrations of 16.769 and 70.850 mg L−1. Under 5% (v/v) CO2, C. salina significantly accumulated starch and carbohydrate with respective concentrations of 13.699 and 58.910 mg L−1. The combination of nitrogen and sulfur limitation significantly triggered the highest starch (30.505 mg L−1) and carbohydrate (145.994 mg L−1) accumulation. Under optimized 5% v/v CO2 supply, the concentrations of starch and carbohydrate accumulated by C. salina using wastewater were 24.971 and 110.756 mg L−1, respectively, which were approximately twice higher compared with the synthetic medium. The usage of wastewater aerated with 5% v/v CO2 would be a more sustainable and economical strategy for high starch and carbohydrate accumulation in C. salina compared with the combination of nitrogen with sulfur limitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel Raouf N, Al-Homaidan A, Ibraheem I (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19(3):257–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ana LG, Carla MR, José CMP, Simões M (2016) The effect of increasing CO2 concentrations on its capture, biomass production and wastewater bioremediation by microalgae and cyanobacteria. Algal Res 14:127–136

    Article  Google Scholar 

  • Andersen RA, Berges JA, Harisson PJ, Watanabe MM (2005) Appendix A: Recipes for freshwater and seawater media. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, Burligton, pp 429–538

    Google Scholar 

  • AOAC Official Method 996.11, 1996. Starch (total) in cereal products: Amyloglucosidase-α-amylase method, in: Horwitz, W. (Ed.), Official methods of analysis of AOAC International. AOAC International, Gaithersburg, Maryland, United States.

  • Aslan S, Kapdan IK, 2006 Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng 1-16.

  • Behrens PW, Bingham SE, Hoeksema SD, Cohoon DL, Cox JC (1989) Studies on the incorporation of CO2 into starch by Chlorella vulgaris. J Appl Phycol 1:123–130

    Article  Google Scholar 

  • Brányiková I, Maršálková B, Doucha J, Brányik T, Bišová K, Zachleder V, Vítová M (2011) Microalgae—novel highly efficient starch producers. Biotechnol Bioeng 108(4):766–776

    Article  CAS  PubMed  Google Scholar 

  • Brown MR, McCausland MA, Kowalski K (1998) The nutritional value of four Australian microalgal strains fed to Pacific oyster Crassostrea gigas spat. Aquaculture. 165:281–293

    Article  Google Scholar 

  • Bruland KW, Donat JR, Hutchins DA (1991) Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnol Oceanogr 36(8):1555–1577

  • Bruton T, Lyons H, Lerat T, Stanley M, Rasmussen MB (2009) A review of the potential of marine algae as a source of biofuel in Ireland. Glasnevin, Sustainable Energy Ireland, Dublin

    Google Scholar 

  • Cakmak T, Angun P, Demiray YE, Ozkan AD, Elibol Z, Tekinay T (2012) Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii. Biotechnol Bioeng 109(8):1947–1957

    Article  CAS  PubMed  Google Scholar 

  • Chan KY, Wong KH, Wong PK (1979) Nitrogen and phosphorus removal from sewage effluent with high salinity by Chlorella salina. Environ Pollut 18(2):139–146

    Article  CAS  Google Scholar 

  • Cheng YS, Labavitch JM, VanderGheynst JS (2014) Elevated CO2 concentration impacts cell wall polysaccharide composition of green microalgae of the genus Chlorella. Lett Appl Microbiol 60:1–7

    Article  CAS  PubMed  Google Scholar 

  • Cheng D, Li D, Yuan Y, Zhou L, Li X, Wu T, Wang L, Zhao Q, Wei W, Sun Y (2017) Improving carbohydrate and starch accumulation in Chlorella sp. AE10 by a novel two-stage process with cell dilution. Biotechnol Biofuels 10(75):75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100(2):833–838

    Article  CAS  PubMed  Google Scholar 

  • Chng Lee K., Chan D, (2017). Evaluation on microalgae biomass for bioethanol production. Paper presented at the IOP Conference Series: Materials Science and Engineering, Indonesia.

  • Chng LM, Chan DJ, Lee KT (2016) Sustainable production of bioethanol using lipid-extracted biomass from Scenedesmus dimorphus. J Clean Prod 130:68–73

    Article  CAS  Google Scholar 

  • Choix FJ, De-Bashan LE, Bashan Y (2012) Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella sp. induced by Azospirillum brasilense: II. Heterotrophic conditions. Enzym Microb Technol 51(5):300–309

    Article  CAS  Google Scholar 

  • De Morais MG, Costa JAV (2007) Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol 129(3):439–445

    Article  CAS  PubMed  Google Scholar 

  • Dhillon GS (2016) Protein by products: Transformation from environmental burden into value-added products. Academic Press, London

    Google Scholar 

  • Di Caprioa F, Viscaa A, Altimaria P, Toroa L, Masciocchib B, Iaquaniellob G, Pagnanelli F (2016) Two stage process of microalgae cultivation for starch and carotenoid production. Chem Eng Trans 49

  • Dinesh KS, Santhanam P, Lewis Oscar F, Thajuddin N (2015) A dual role of marine microalga Chlorella sp.(PSDK01) in aquaculture effluent with emphasis on initial population density. Arab J Sci Eng 40(1):29–35

    Article  CAS  Google Scholar 

  • Doucha J, Straka FS, Ivansk KL (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412

    Article  Google Scholar 

  • Dragone G, Fernandes BD, Abreu AP, Vicente AA, Teixeira JA (2011) Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl Energy 88(10):3331–3335

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers P, Smith F (1951) A colorimetric method for the determination of sugars. Nature. 168(4265):167

    Article  CAS  PubMed  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers P, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356

    Article  CAS  Google Scholar 

  • Faria GR, Paes C, Castro D, Tinoco NA, Barbarino E, Lourenço SO (2012) Effects of the availability of CO2 on growth, nutrient uptake, and chemical composition of the marine microalgae Chlorella sp. and Nannochloropsis oculata, two potentially useful strains for biofuel production. Int Res J Biotechnol 3(5):65–75

    Google Scholar 

  • Ferdowshi Z (2013) Screening of fresh water microalgae and Swedish pulp and paper mill waste waters with the focus on high algal biomass production. Chalmers University of Technology, Gothenburg

    Google Scholar 

  • George B, Pancha I, Desai C, Chokshi K, Paliwal C, Ghosh T, Mishra S (2014) Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus–a potential strain for bio-fuel production. Bioresour Technol 171:367–374

    Article  CAS  PubMed  Google Scholar 

  • Gifuni I, Olivieri G, Russo KI, D’Errico G, Pollio A, Marzocchella A (2017) Microalgae as new sources of starch: isolation and characterization of microalgal starch granules. Chem Eng Trans 57:1423–1428

    Google Scholar 

  • HACH (ed) (2007) DR 2800 Spectrophotometer Procedures Manual, 2 ed. HACH Company, Dusseldorf

    Google Scholar 

  • Haggith M, (2018). Reducing paper consumption and ensuring fair access. In: Martin, J. and Haggith M (Ed.), The state of the global paper industry, pp 8–15. Environmental Paper Network.

  • Hanifzadeh M, Garcia EC, Viamajala S (2018) Production of lipid and carbohydrate from microalgae without compromising biomass productivities: Role of Ca and Mg. Renew Energy 127:989–997

    Article  CAS  Google Scholar 

  • Harun R, Danquah MK, Forde GM (2010) Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol 85:199–203

    CAS  Google Scholar 

  • Ho SH, Huang SW, Chen CY, Hasunuma T, Kondo A, Chang JS (2013) Characterization and optimization of carbohydrate production from an indigenous microalga Chlorella vulgaris FSP-E. Bioresour Technol 135:157–165

    Article  CAS  PubMed  Google Scholar 

  • Hsieh CH, Wu WT (2009) Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour Technol 100(17):3921–3926

    Article  CAS  PubMed  Google Scholar 

  • Jacob Lopes E, Scoparo CHG, Lacerda LMCF, Franco TT (2009) Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors. Chem Eng Process Process Intensif 48(1):306–310

    Article  CAS  Google Scholar 

  • Jasim MS, Maysam AMA (2014) Bioethanol production from green alga Chlorella vulgaris under different concentrations of nitrogen. Asian J Nat Appl Sci 3(3):27–36

    Google Scholar 

  • Jayasankar R, Valsala K (2008) Influence of different concentrations of sodium bicarbonate on growth rate and chlorophyll content of Chlorella salina. J Mar Biol Assoc India 50(1):74–78

    Google Scholar 

  • John MKV, Malcolm MRB, Graeme MAD, Jeffrey SW (1993) The biochemical composition of maine microalgae fom the class Eustigmatophyceac. J Phycol 29(1):69–78

    Article  Google Scholar 

  • Katiyar R, Gurjar B, Biswas S, Pruthi V, Kumar N, Kumar P (2017) Microalgae: an emerging source of energy based bio-products and a solution for environmental issues. Renew Sust Energ Rev 72:1083–1093

    Article  CAS  Google Scholar 

  • Kendirlioglu G, Agirman N, Cetin AK (2015) The effects of photoperiod on the growth, protein amount and pigment content of Chlorella vulgaris. Turk J Sci Tech 10(2):7–10

    Google Scholar 

  • Klein U (1987) Intracellular carbon partitioning in Chlamydomonas reinhardtii. Plant Physiol 85(4):892–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krzeminska I, Skowronska BP, Trzcinska M, Tys J (2014) Influence of photoperiods on the growth rate and biomass productivity of green microalgae. Bioprocess Biosyst Eng 37:735–741

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Thakur K (2017) Bioplastics-classification, production and their potential food applications. J Hill Agric 8(2):118–129

    Article  Google Scholar 

  • Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Malcata FX, Van Langenhove H (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28(7):371–380

    Article  CAS  PubMed  Google Scholar 

  • Laurentin A, Edwards CA (2003) A microtiter modification of the anthrone-sulfuric acid colorimetric assay for glucose-based carbohydrates. Anal Biochem 315(1):143–145

    Article  CAS  PubMed  Google Scholar 

  • Löhr A, Savelli H, Beunen R, Kalz M, Ragas A, Van Belleghem F (2017) Solutions for global marine litter pollution. Curr Opin Environ Sustain 28:90–99

    Article  Google Scholar 

  • Lv JM, Cheng LH, Xu XH, Zhang L, Chen HL (2010) Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresour Technol 101(17):6797–6804

    Article  CAS  PubMed  Google Scholar 

  • Markou G, Nerantzis E (2013) Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol Adv 31(8):1532–1542

    Article  CAS  PubMed  Google Scholar 

  • Markou G, Angelidaki I, Georgakakis D (2012) Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Appl Microbiol Biotechnol 96(3):631–645

    Article  CAS  Google Scholar 

  • McElroy W Nason A (1954) Mechanism of action of micronutrient elements in enzyme systems. Annu Rev Plant Physiol 5(1):1–30

  • Megazyme (2009) Total starch assay procedure (amyloglucosidase/α-amylase method). Megazyme International Ireland Ltd, Wicklow

    Google Scholar 

  • Mohammadi Nafchi A, Moradpour M, Saeidi M, Alias AK (2013) Thermoplastic starches: properties, challenges, and prospects. Starch-Stärke. 65(1-2):61–72

    Article  CAS  Google Scholar 

  • Plastic Europe (2016) Plastics—The facts 2016: An analysis of European plastics production, demand and waste data. Association of Plastic Manufacturers Brussels, Brussels

    Google Scholar 

  • Qin J (2005) Bio-hydrocarbon from algae: impacts of temperature, light and salinity on algae growth. A report for the Rural Industries Research and Development Corporation. RIRDC Publication, Australia

    Google Scholar 

  • Rehman ZU, Anal AK (2019) Enhanced lipid and starch productivity of microalga (Chlorococcum sp. TISTR 8583) with nitrogen limitation following effective pretreatments for biofuel production. Biotechnol Rep 21(1-8)

  • Rendon SM, Roldan GJC, Voroney RP (2013) Effect of carbon dioxide concentration on the growth response of Chlorella vulgaris under four different LED illumination. Int J Biotech Well 2(3):125–131

    Google Scholar 

  • Shahar SS (2014) Biochemical composition and antioxidant capacity of marine microalgae Chlorella salina Butcher and Isochrysis maritima Billard and Gayral isolated from Penang Coastal Waters. Universiti Sains Malaysia, Malaysia

  • Simone S, Anand G, Joaquim S (2015. Life cycle Gayral isolated from Penang Coastal Waters) Universiti Sains Malaysia, Malaysia. Assessment of biofuels from an integrated Brazilian algae-sugarcane biorefinery. Energy. 81:373–381

    Article  CAS  Google Scholar 

  • Sofie VDH, Vervaeren H, Boon N (2012) Flue gas compounds and microalgae: biochemical interactions leading to biotechnological opportunities. Biotechnol Adv 30(6):1405–1424

    Article  CAS  Google Scholar 

  • Soopna P, Wan Omar WM, and Lee CK, 2017. Proximate and biochemical analysis for marine and freshwater algae. Paper presented at the International Conference on Environmental Research and Technology (ICERT), Penang, Malaysia.

  • Sun X, Cao Y, Xu H, Liu Y, Sun J, Qiao D, Cao Y (2014) Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process. Bioresour Technol 155:204–212

    Article  CAS  PubMed  Google Scholar 

  • Sydney EB, Sturm W, de Carvalho JC, Thomaz-Soccol V, Larroche C, Pandey A, Soccol CR (2010) Potential carbon dioxide fixation by industrially important microalgae. Bioresour Technol 101(15):5892–5896

    Article  CAS  PubMed  Google Scholar 

  • Takeshita T, Ota S, Yamazaki T, Hirata A, Zachleder V, Kawano S (2014) Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions. Bioresour Technol 158:127–134

    Article  CAS  PubMed  Google Scholar 

  • Tanadul O, Vander Gheynst JS, Beckles DM, Powell AL, Labavitch JM (2014) The impact of elevated CO2 concentration on the quality of algal starch as a potential biofuel feedstock. Biotechnol Bioeng 111(7):1323–1331

    Article  CAS  PubMed  Google Scholar 

  • Tang Han W, Li P, Miao X, Zhong J (2011) CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour Technol 102(3):3071–3076

    Article  CAS  Google Scholar 

  • Xie F, Luckman P, Milne J, McDonald L, Young C, Tu CY, Di Pasquale T, Faveere R, Halley PJ (2014) Thermoplastic starch: current development and future trends. J Renew Mater 2(2):95–106

    Article  CAS  Google Scholar 

  • Xu Y, Ibrahim IM, Harvey PJ (2016) The influence of photoperiod and light intensity on the growth and photosynthesis of Dunaliella salina (chlorophyta) CCAP 19/30. Plant Physiol Biochem 106:305–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao CH, Ai JN, Cao XP, Xue S, Zhang W (2012) Enhancing starch production of a marine green microalga Tetraselmis subcordiformis through nutrient limitation. Bioresour Technol 118:438–444

    Article  CAS  PubMed  Google Scholar 

  • Yao CH, Ai JN, Cao XP, Xue S (2013) Characterization of cell growth and starch production in the marine green microalga Tetraselmis subcordiformis under extracellular phosphorus-deprived and sequentially phosphorus-replete conditions. Appl Microbiol Biotechnol 97(13):6099–6110

    Article  CAS  PubMed  Google Scholar 

  • Yao L, Shi J, Miao X (2015) Mixed wastewater coupled with CO2 for microalgae culturing and nutrient removal. PLoS One 10(9):1–16

    Google Scholar 

  • Zeller MA, Hunt R, Jones A, Sharma S (2013) Bioplastics and their thermoplastic blends from Spirulina and Chlorella microalgae. J Appl Polym Sci 130(5):3263–3275

    Article  CAS  Google Scholar 

  • Zhang X (2015) Microalgae removal of CO2 from flue gas. IEA Clean Coal Centre, London, pp 1–95

    Google Scholar 

  • Zhu S, Wang Y, Huang W, Xu J, Wang Z, Xu JL, Yuan Z (2014) Enhanced accumulation of carbohydrate and starch in Chlorella zofingiensis induced by nitrogen starvation. Appl Biochem Biotechnol 174(7):2435–2445

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Feng P, Feng J, Xu J, Wang Z, Xu J, Yuan Z (2018) The roles of starch and lipid in Chlorella sp. during cell recovery from nitrogen starvation. Bioresour Technol 247:58–65

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author (Chong, J.F.) would like to express her deepest thankfulness to the School of Industrial Technology, USM for allowing her to use the available facilities and equipment in the laboratory throughout the study. The author (Lee, C.K.) would like to express his greatest appreciation and gratitude to USM for giving him a USM Research Universiti grant (1001/PTEKIND/811273).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chee Keong Lee.

Ethics declarations

This article does not contain any studies with animals performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chong, J.F., Fadhullah, W., Lim, V. et al. Two-stage cultivation of the marine microalga Chlorella salina for starch and carbohydrate production. Aquacult Int 27, 1269–1288 (2019). https://doi.org/10.1007/s10499-019-00385-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-019-00385-3

Keywords

Navigation