Advertisement

Aquaculture International

, Volume 27, Issue 1, pp 323–335 | Cite as

Microalgae diet for juveniles of Spondylus limbatus

  • A. Marquez
  • C. LodeirosEmail author
  • A. Loor
  • J. Revilla
  • F. Da Costa
  • S. Sonnenholzner
Article
  • 59 Downloads

Abstract

The effects of mono- and bi-microalgal diets on shell length, organic tissue, and survival of Spondylus limbatus juveniles were tested in two separate feeding experiments. The first examined nine single species of microalgae: Chaetoceros gracilis, C. muelleri, Isochrysis aff. galbana (T-ISO), Tetraselmis chuii, T. maculata, Pavlova lutheri, Dunaliella salina, Rhodomonas sp., and Nannochloropsis sp. An extra treatment maintaining the juveniles in a long line culture was at Ayangue Bay, Province of Santa Elena, Ecuador. Single diets of P. lutheri, C. muelleri, and C. gracilis showed the best combined growth of survival performance in juveniles, and were therefore selected for the bi-algal diet experiment design with the inclusion of I. galbana T-ISO due to its recommended use in bivalve culture. A second experiment consisted in selecting the best three microalgae species that resulted from the first experiment and combined each other in binary treatments at 1:1 ratio. All bi-algal diets in combination with P. lutheri showed good result in growth (shell and biomass), yield, and survival. However, single P. lutheri mono-algal diet showed equal or better performance index than the other bi-algal combined diets, demonstrating the pertinence in using this microalga as food for S. limbatus juveniles.

Keywords

Bivalve culture Mollusks Algal diets Spondylids Eastern Tropical Pacific Juvenile diets 

Notes

Acknowledgments

We are grateful to J. Alió for reviewing and providing helpful comments. This work was performed as part of the Research Project “Desarrollo de protocolo de domesticación para el uso sostenible de nuevas especies marinas para consumo de alimento y repoblación de bancos naturales” financed by the Secretaría Técnica de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT), and the Research Project “Prestación de Servicios de Investigación Profesional y Exámenes de Laboratorio, Spondylus y Pepino de Mar” financed by the Undersecretary of Aquaculture, Ministry of Agriculture, Livestock, Aquaculture and Fisheries, Ecuador (MAGAP).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

References

  1. Albentosa M, Pérez-Camacho A, Labarta U, Fernández-Reiriz MJ (1996) Evaluation of live microalgal diets for the seed culture of Ruditapes decussatus using physiological and biochemical parameters. Aquaculture 148(1):11–23CrossRefGoogle Scholar
  2. Aranda-Burgos JA, da Costa F, Nóvoa S, Ojea J, Martínez-Patiño D (2014) Effects of microalgal diet on growth, survival, biochemical and fatty acid composition of Ruditapes decussatus larvae. Aquaculture 420:38–48CrossRefGoogle Scholar
  3. Batista R, Kamermans P, Verdegem M, Smaal A (2014) Growth and fatty acid composition of juvenile Cerastodesma edule (L) fed live microalgae diets with different fatty acid profiles. Aquac Nutr 20:132–142CrossRefGoogle Scholar
  4. Beninger P, Le Pennec M (2016) Scallop structure and function, chapter 3. In: Shumway S, Pearson J (eds) Scallops: biology, ecology and aquaculture. Developments in aquaculture and fisheries science, vol 40, third edition. Elsevier Science Publishers B.V., pp 85–159Google Scholar
  5. Bock MJ, Miller DC (1994) Seston variability and daily growth in Mercenaria mercenaria on an intertidal sandflat. Mar Ecol Prog Ser 114:117–127CrossRefGoogle Scholar
  6. Brown M, Blackburn S (2013) Live microalgae as feeds in aquaculture hatcheries. In: Allan G, Burnell G (eds) Advances in aquaculture hatchery technology. V.P., Oxford, pp 117–156CrossRefGoogle Scholar
  7. Coan EV, Valentich-Scott P (2012) Bivalve seashells of tropical West America: marine bivalve mollusks from Baja California to Northern Peru. Santa Barbara Museum of Natural History Monographs Number 6 and Studies in Biodiversity Number 4Google Scholar
  8. Coutteau P, Sorgeloos P (1992) The requirement for live algae and their replacement by artificial diets in the hatchery and nursery rearing of bivalve molluscs: an international survey. J Shellfish Res 11(2):467–476Google Scholar
  9. Cudney-Bueno R, Rowell K (2008) Establishing a baseline for management of the rock scallop Spondylus calcifer (Carpenter 1857): growth and reproduction in the upper Gulf of California, Mexico. J Shellfish Res 27:625–632CrossRefGoogle Scholar
  10. da Costa F, Petton B, Mingant C, Bougaran G, Rouxel C, Quere C, Wikfors GH, Soudant P, Robert R (2016) Influence of one selected Tisochrysis lutea strain rich in lipids on Crassostrea gigas larval development and biochemical composition. Aquac Nutr 22(4):813–836CrossRefGoogle Scholar
  11. Davis HC, Guillard RR (1958) Relative value of ten genera of micro-organisms as foods for oyster and clam larvae. Fish Bull US 136:293–304Google Scholar
  12. Díaz MA, Martínez G (1992) Efecto de diferentes dietas sobre el balance energético en juveniles de Argopecten purpuratus L. Rev Biol Mar Valparaíso 27:163–173Google Scholar
  13. Epifanio CE (1979) Growth in bivalve molluscs: nutritional effects of two or more species of algae in diets fed to the American oyster Crassostrea virginica (Gmelin) and the hard clam Mercenaria mercenaria (L.). Aquaculture 18(1):1–12CrossRefGoogle Scholar
  14. Freites L, Manzón-Suástegui J, Maeda-Martínez A, Koch V, Osuna-García M, Ruiz-Verdugo C, García-Domínguez F, De la Roche J, Manzoni G, Rupp G, Lodeiros C (2011) Preengorde, cultivo intermedio y engorde de los pectínidos Nodipecten nodosus y N. subnodosus. In: Maeda-Martínez AN, Lodeiros C (eds) Biología y Cultivo de los Moluscos Pectínidos del Género Nodipecten Limusa México, pp 313–350Google Scholar
  15. Gosling E (2015) Marine bivalve molluscs, 2nd edn. News Books, OxfordCrossRefGoogle Scholar
  16. Gran J (1996) The relationship of bioenergtics and the environment to the field growth of cultured bivalves. J Exp Mar Biol Ecol 200:239–256CrossRefGoogle Scholar
  17. Hawkins AJS, Smith RFM, Bayne BL, Héral M (1996) Novel observations underlying the fast growth of suspension-feeding shellfish in turbid environments: Mytilus edulis. Mar Ecol Prog Ser 131:179–190CrossRefGoogle Scholar
  18. Helm MM, Bourne N (2004) Hatchery culture of bivalves: a practical manual. FAO Fisheries Technical Paper 471. FAO, Rome, p 177Google Scholar
  19. Hemaiswarya S, Raja R, Ravi-Kumar R, Ganesan V, Anbazhagan C (2011) Microalgae: a sustainable feed source for aquaculture. World J Microbiol Biotechnol 27:1737–1746CrossRefGoogle Scholar
  20. Hendriks IE, van Duren LA, Herman PMJ (2003) Effect of dietary polyunsaturated fatty acids on reproductive output and larval growth of bivalves. J Exp Mar Biol Ecol 296:199–213CrossRefGoogle Scholar
  21. Langdon C, Waldock MJ (1981) The effect of algal and artificial diets on the growth and fatty acid composition of Crassostrea gigas spat. J Mar Biol Assoc UK 61(2):431–448CrossRefGoogle Scholar
  22. Le Pennec M, Rangel-Dávalos C (1985) Observations en microscopie a epifluorescence de l’ingestion et de la digestion d’algues unicellulaires chez des jeunes larves de Pecten maximus (Pectinidae, Bivalvia). Aquaculture 47:39–51CrossRefGoogle Scholar
  23. Lodeiros C, Soria G, Valentich-Scott P, Munguía-Vega A, Santana Cabrera J, Cudney-Bueno R, Loor A, Márquez A, Sonnenholzner S (2016) Spondylids of Eastern Pacific Ocean. J Shellfish Res 35(2):1–15CrossRefGoogle Scholar
  24. Loor A, Ortega D, Lodeiros C, Sonnenholzner S (2016) Early life cycle and effects of microalgal diets on larval development of the spiny rock-scallop, Spondylus limbatus (Sowerby II, 1847). Aquaculture 450:328–334CrossRefGoogle Scholar
  25. Lora-Vilchis MC, Maeda-Martinez AN (1997) Ingestion and digestion index of catarina scallop Argopecten ventricosus circularis, Sowerby II, 1842, veliger larvae with ten microalgae species. Aquac Res 28:905–910CrossRefGoogle Scholar
  26. Lora-Vilchis MC, Robles-Mungaray M, Doktor N (2004) Food value of four microalgae juveniles of the Lion’s Paw Scallop Lyropecten subnodosus (Sowerby, 1833). J World Aquacult Soc 35(2):297–303CrossRefGoogle Scholar
  27. Lucas J, Southgate P (2012) Aquaculture: farming aquatic animals and plants. WB, West SussexCrossRefGoogle Scholar
  28. Mamat N, Alfaro A (2014) Evaluation of microalgal and formulated diets for the culture of the New Zealand pipi clam Paphies australi. Int Aquat Res 6:1–13CrossRefGoogle Scholar
  29. Marshall R, McKinley S, Pearce CM (2010) Effects of nutrition on larval growth and survival in bivalves. Rev Aquac 2:33–55CrossRefGoogle Scholar
  30. Martínez-Fernandez E, Acosta-Salmón H, Rangel-Dávalos C (2004) Ingestion and digestion of 10 species of microalgae by winged pearl oyster Pteria sterna (Gould, 1851) larvae. Aquaculture 230:417–423CrossRefGoogle Scholar
  31. Martínez-Fernández E, Acosta-Salmón H, Southgate PC (2006) The nutritional value of seven species of tropical microalgae for black-lip pearl oyster (Pinctada margaritifera, L.) larvae. Aquaculture 257:491–503CrossRefGoogle Scholar
  32. Nevejan N, Saez I, Gajardo G, Sorgeloos P (2003) Supplementation of EPA and DHA emulsions to a Dunaliella tertiolecta diet: effect on growth and lipid composition of scallop larvae, Argopecten purpuratus (Lamarck, 1819). Aquaculture 217(1):613–632CrossRefGoogle Scholar
  33. Palacios E, Racotta IS, Kraffe E, Marty Y, Moal J, Samain JF (2005) Lipid composition of the giant lion’s-paw scallop (Nodipecten subnodosus) in relation to gametogenesis: I. Fatty acids. Aquaculture 250:270–282CrossRefGoogle Scholar
  34. Pernet F, Tremblay R (2004) Effect of varying levels of dietary essential fatty acid during early ontogeny of the sea scallop Placopecten magellanicus. J Exp Mar Biol Ecol 310:73–86CrossRefGoogle Scholar
  35. Ponis E, Robert R, Parisi G (2003) Nutritional value of fresh and concentrated algal diets for larval and juvenile Pacific oysters (Crassostrea gigas). Aquaculture 221:491–505CrossRefGoogle Scholar
  36. Ponis E, Probert I, Veron B, Le Coz JR, Mathieu M, Robert R (2006) Nutritional value of six Pavlovophyceae for Crassostrea gigas and Pecten maximus larvae. Aquaculture 254(1):544–553CrossRefGoogle Scholar
  37. Rico-Villa B, Le Coz JR, Mingant C, Robert R (2006) Influence of phytoplankton diet mixtures on microalgae consumption, larval development and settlement of the Pacific oyster Crassostrea gigas (Thunberg). Aquaculture 256:377–388CrossRefGoogle Scholar
  38. Robert R, Trintignac P (1997) Microalgues et nutrition larvaire en écloserie de mollusques. Haliotis 26:1–13Google Scholar
  39. Robinson S, Parson J, Davidson A, Shumway S, Blake N (2016) Scallop aquaculture and fisheries in Eastern North America, chapter 18. In: Shumway S, Pearson J (eds) Scallops: biology, ecology and aquaculture. Developments in Aquaculture and Fisheries Science, vol 40, third edition. Elsevier Science Publishers B.V., pp 37–779Google Scholar
  40. Sahu A, Pancha I, Jain D, Paliwal C, Ghosh T, Patidar S, Bhattacharya S, Mishra S (2013) Fatty acids as biomarkers of microalgae. Phytochemistry 89:53–58CrossRefGoogle Scholar
  41. Serb J (2016) Reconciling morphological and molecular approaches in developing a phylogeny for the Pectinidae (Mollusca: Bivalvia). Chapter 1. In: Shumway S, Pearson J (eds) Scallops: biology, ecology and aquaculture. Developments in aquaculture and fisheries science, vol 40, third edition. Elsevier Science Publishers B.V., pp 1–29Google Scholar
  42. Soria G, Tordecillas-Guillen J, Cudney-Bueno R, Shaw W (2010) Spawning induction, fecundity estimation, and larval culture of Spondylus calcifer (Carpenter, 1857) (Bivalvia: Spondylidae). J Shellfish Res 29(1):143–149CrossRefGoogle Scholar
  43. Strohmeier T, Strand Ø, Cranford P (2009) Clearance rates of the great scallop (Pecten maximus) and blue mussel (Mytilus edulis) at low natural seston concentrations. Mar Biol 156:1781–1795CrossRefGoogle Scholar
  44. Velasco-Blanco G (1997) Cultivo larvario a nivel piloto del callo de hacha Atrina maura Sowerby y de la almeja mano de león Lyropecten subnodosus Sowerby con dos especies de microalgas. Master Thesis. CICESE, MéxicoGoogle Scholar
  45. Zhukova NV, Aizdaicher NA (1995) Fatty acid composition of 15 species of marine microalgae. Phytochemistry 39(2):351–335CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIMEscuela Superior Politécnica del Litoral, ESPOLGuayaquilEcuador
  2. 2.Grupo de Investigación en Biología y Cultivo de Moluscos, Escuela de Acuicultura y Pesquerías, Facultad de Ciencias VeterinariasUniversidad Técnica de ManabíBahía de CaráquezEcuador
  3. 3.Universidad de OrienteInstituto Oceanográfico de VenezuelaCumanáVenezuela
  4. 4.Oceano Fresco Lda, Edifício Mira CenterMiraPortugal

Personalised recommendations