Aquaculture International

, Volume 26, Issue 4, pp 1119–1134 | Cite as

Microalgal paste production of the diatom Chaetoceros calcitrans using electrolytic flocculation method at optimum culture conditions

  • Milagros R. de la PeñaEmail author
  • Annie Villa Franco
  • Hermoso P. IgcasanJr
  • Mary Dianne Grace N. Arnaldo
  • Ramil M. Piloton
  • Soledad S. Garibay
  • Vicente T. Balinas


The optimum culture conditions of the local strain Chaetoceros calcitrans were determined to improve biomass and reduce cost of production. Under outdoor culture conditions, higher cell density was attained when the cultures were enriched with Tungkang Marine Research Laboratory (TMRL) medium composed of cheap technical grade reagents and cultured at 25 g L−1 salinity. The cultures were lighted with two 40 W cool-white GE fluorescent tubes (24–35 μmol photon m−2 s−1). Using semi-continuous culture system under established optimum culture conditions, C. calcitrans can be re-cultured thrice and concentrated at each culture cycle using electrolytic flocculation method to produce 4.6 kg m−3 of diatom paste. The viability of concentrated C. calcitrans after 3 months of storage was comparable to live diatom cells. Simple preservation technique by low-temperature storage is convenient for storing algal concentrates for use as starter cultures and for feeding invertebrates. The paste costs USD 8.24 kg−1 inclusive of the assets and flocculation materials for culturing and harvesting the diatom, respectively. This study established the suitable conditions for mass culture of C. calcitrans and produced concentrated diatoms in paste form that is readily available for aquaculture hatcheries at a lower cost.


Microalgal paste Chaetoceros calcitrans Electrolytic flocculation Optimum culture conditions 


Funding information

This study was funded by the Aquaculture Department, Southeast Asian Fisheries Development Center (SEAFDEC/AQD) Code 5103-20T and Department of Science and Technology (DOST) under the auspices of the Philippine Council for Agriculture, Forestry and Natural Resources Research and Development (PCAARRD). The methods of this study were based on the results of the research code NR-02-C2005T funded by SEAFDEC/AQD.


  1. Alfafara CC, Nakano K, Nomura N, Igarashi T, Matsumura M (2002) Operating and scale-up factors for the electrolytic removal of algae from eutrophied lake water. J Chem Technol Biotechnol 77:871–876CrossRefGoogle Scholar
  2. AOAC (Association of Official Analytical Chemists) (1980) Official methods of analysis of the Association of Official Analytical Chemists. 13th ed. Washington, DCGoogle Scholar
  3. Aragon AB, Padilla RB, Ros de Ursinos JAF (1992) Experimental study of the recovery of algae cultured in effluents from the anaerobic biological treatment of urban wastewaters. Resour Conserv Recycl 6:290–302Google Scholar
  4. Aujero EJ, Millamena O (1979) Viability of frozen algae used as food for larval penaeids. SEAFDEC aquaculture department. Q Res Rep 3(4):11–16Google Scholar
  5. Aujero EJ, Millamena O (1981) Viability of frozen algae used as food for larval penaeids. Fish Res J Philipp 6:63–69Google Scholar
  6. Aujero EJ, Tech E (1985) Growth and macronutrient composition of algal foods grown in various organic media. SEAFDEC Aquaculture Department Annual Research Report. Tigbauan, Iloilo, Philippines, p 24Google Scholar
  7. Ayson FG, Reyes OS, de Jesus-Ayson EGT (2014) Seed production of rabbitfish Siganus guttatus. SEAFDEC Aquaculture Extension Manual No. 59. p 21Google Scholar
  8. Banerjee S, Hew WE, Khatoon H, Shariff M, Yusoff FM (2011) Growth and proximate composition of tropical marine Chaetoceros calcitrans and Nannochloropsis oculata cultured outdoors and under laboratory conditions. Afr J Biotechnol 10:1375–1383Google Scholar
  9. Barakoni R, Awal S, Christie A (2015) Growth performance of the marine microalgae Pavlova salina and Dunaliella tertiolecta using different commercially available fertilizers in natural seawater and inland saline ground water. J Algal Biomass Utln 6:15–25Google Scholar
  10. Bonaldo A, Badani A, Testi S, Corso G, Mordenti AL, Gatta PP (2005) Use of centrifuged and preserved microalgae for feeding juvenile manila clam (Tapes philippinarum): effects on growth and fatty acid composition. Ital J Anim Sci 4:375–384CrossRefGoogle Scholar
  11. Brown MR (1995) Effects of storage and processing on the ascorbic acid content of concentrates prepared from Chaetoceros calcitrans. J Appl Phycol 7:495–500CrossRefGoogle Scholar
  12. Brown MR, Robert R (2002) Preparation and assessment of microalgal concentrates as feeds for larval and Pacific oyster (Crassostrea gigas). Aquaculture 2017:289–309CrossRefGoogle Scholar
  13. Brown MR, Jeffrey SW, Volkman JK, Dunstan GA (1997) Nutritional properties of microalgae for mariculture. Aquaculture 151:315–331CrossRefGoogle Scholar
  14. Carcamo PF, Candia AI, Chaparro OR (2005) Larval development and metamorphosis in the sea urchin Loxechinus albus (Echinodermata: Echinoidea): effects of diet type and feeding frequency. Aquaculture 249:375–386CrossRefGoogle Scholar
  15. Correa-Reyes JG, Sánchez-Saavedra MP, Siqueiros-Beltrones DA, Flores-Acevedo N (2001) Isolation and growth of eight strains of benthic diatoms, cultured under two light conditions. J Shellfish Res 20:603–610Google Scholar
  16. Coutteau P, Sorgeloos P (1992) The use of algal substitutes and the requirement for live algae in the hatchery and nursery rearing of bivale molluscs: an international survey. J Shellfish Res 11:467–476Google Scholar
  17. D’Souza FML, Lecossois D, Heasman MP, Diemar JA, Jackson CJ, Pendrey RC (2000) Evaluation of centrifuged microalgae concentrates as diets for Penaeus monodon Fabricius larvae. Aquac Res 31:661–670CrossRefGoogle Scholar
  18. Dabbagh AR, Sedaghat MR, Rameshi H, Kamrani E (2011) Breeding and larval rearing of the sea cucumber Holothuria leucospilota Brandt (Holothuria vegabunda Selenka) from the northern Persian gulf, Iran. SPC Beche-de-Mer Inf Bull 31:35–38Google Scholar
  19. de la Peña MR (2007) Cell growth and nutritive value of the tropical benthic diatom, Amphora sp., at varying levels of nutrients and light intensity, and different culture locations. J Appl Phycol 19:647–655CrossRefGoogle Scholar
  20. de Vries PJR, Torenbeek M, Hillerbrand H (1983) Bioassays with Stigeoclonium Kütz. (Chlorophyceae) to identify nitrogen and phosphorus limitations. Aquat Bot 17:95–106CrossRefGoogle Scholar
  21. Delaporte M, Soudant P, Most J, Lambert C, Quere C, Miner P, Choquer G, Paiiard C, Samain JF (2003) Effect of monospecific algal diet on immune functions in two bivalve species-Crassostrea gigas and Ruditapes philippinarum. J Exp Biol 206:3053–3064CrossRefPubMedGoogle Scholar
  22. Delaunay F, Marty Y, Moal J, Samain JF (1993) The effect of monospecific algal diets on growth and fatty acid composition of Pecten maximus (L.) larvae. J Exp Mar Biol Ecol 173:163–179CrossRefGoogle Scholar
  23. Galley TH, Batista FM, Braithwaite R, King J, Beaumont AR (2010) Optimisation of larval culture of the mussel Mytilus edulis (L.) 2010. Aquac Int 18:315–325CrossRefGoogle Scholar
  24. Gammanpila AM, Rupasinghe CP, Subasinghe S (2015) Cultivation of microalgae; Chaetoceros calcitrans for biodiesel production as affected by different nitrate concentrations and salinity levels. In: Proceedings of 12th ISERD International Conference, Tokyo, Japan, 26 Sept 2015Google Scholar
  25. Gao S, Du M, Tian J, Yang J, Yang J, Ma F, Nan J (2010a) Effects of chloride ions on electro-coagulation-flotation process with aluminum electrodes for algae removal. J Hazard Mater 182:827–834CrossRefPubMedGoogle Scholar
  26. Gao S, Yang J, Tian J, Ma F, Tu G, Du M (2010b) Electro-coagulation-flotation process for algae removal. J Hazard Mater 177:336–343CrossRefPubMedGoogle Scholar
  27. Gapasin RSJ, Marte CL 1990. Milkfish hatchery operation. SEAFDEC Aquaculture Extension Manual No. 17. p 21Google Scholar
  28. Gonzalez-Rodriguez E, Maestrini SY (1984) The use of some agricultural fertilizers for the mass production of marine algae. Aquaculture 36:245–256CrossRefGoogle Scholar
  29. Guerrini F, Cangini M, Boni L (2000) Metabolic responses of the diatom Achnanthes brevipes (Bacillariophyceae) to nutrient limitation. J Phycol 36:882–890CrossRefGoogle Scholar
  30. Guillard RRL (1973) Division rate. In: Stein JR (ed) Handbook of phycological methods: culture methods and growth measurements, Cambridge University press, London, UK, pp 289–311Google Scholar
  31. Harith ZT, Yusoff FM, Mohamed MS, Shariff M, Din M, Ariff AB (2009) Effect of different flocculants on the flocculation performance of microalgae, Chaetoceros calcitrans, cells. Afr J Biotechnol 8(21):5971–5978CrossRefGoogle Scholar
  32. Heasman M, Diemar A, O’Connor W, Sushames T, Foulkes L (2000) Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs—a summary. Aquac Res 31:631–659CrossRefGoogle Scholar
  33. Ivy G, Giraspy DAB (2006) Development of large-scale hatchery production techniques for the commercially important sea cucumber Holothuria scabra var. versicolor (Conand, 1986) in Queensland, Australia. SPC Beche-de-Mer Inf Bull 24:28–34Google Scholar
  34. Kelly MG (2003) Short term dynamics of diatoms in an upland stream and implications for monitoring eutrophication. Environ Pollut 125:117–122CrossRefPubMedGoogle Scholar
  35. Khoi CM (2006) Management of Chaetoceros calcitrans growth in hypersaline Artemia franciscana ponds by optimizing nitrogen and phosphorus availability. Katholieke Universiteit Leuven, DissertationGoogle Scholar
  36. Kim J, Ryu BG, Kim BK, Han JI, Yang JW (2012a) Continuous microalgae recovery using electrolysis with polarity exchange. Bioresour Technol 111:266–275CrossRefGoogle Scholar
  37. Kim J, Ryu BG, Kim K, Kim BK, Han JI, Jang JW (2012b) Continuous microalgae recovery using electrolysis: effect of different electrode pairs and timing of polarity exchange. Bioresour Technol 123:164–170CrossRefPubMedGoogle Scholar
  38. Krichnavaruk S, Powtongsook S, Pavasant P (2007) Enhance productivity of Chaetoceros calcitrans in airlift photobioreactors. Bioresour Technol 98:2123–2130CrossRefPubMedGoogle Scholar
  39. Laing I, Verdugo CG (1992) Nutritional value of spray-dried Tetraselmis suecica for juvenile bivalves. Aquaculture 92:207–218CrossRefGoogle Scholar
  40. Lee AK, Lewis DM, Ashman PJ (2013) Harvesting of marine microalgae by electroflocculation: the energetics, plant design, and economics. Appl Energy 108:45–53CrossRefGoogle Scholar
  41. Liao IC, Huang TL (1970) Experiments on the propagation and culture of prawns in Taiwan. Proceedings of the 14th session of the Indo-Pacific Fisheries Council. p 26Google Scholar
  42. Lora-Vilchis MC, Doktor N (2001) Evaluation of seven algal diets for spat of the Pacific scallop Argopecten ventricosus. J World Aquacult Soc 32:228–235CrossRefGoogle Scholar
  43. Martinez MR, Chakroff RP, Pantastico JB (1975) Direct phytoplankton counting techniques using a haemocytometer. Philipp Agric 59:43–50Google Scholar
  44. McCausland MA, Brown MR, Barrett SM, Diemar JA, Heasman MP (1999) Evaluation of live microalgae and microalgal paste as supplementary food for juvenile Pacific oyster (Crassostrea gigas). Aquaculture 174:323–342CrossRefGoogle Scholar
  45. Millamena OM, Aujero EJ, Borlongan IG (1990) Techniques on algae harvesting and preservation for use in culture and as larval food. Aquac Eng 9:295–304CrossRefGoogle Scholar
  46. Miller MR, Quek SY, Staehler K, Nalder T (2012) Changes in oil content, lipid class and fatty acid composition of the microalga Chaetoceros calcitrans over different phases of batch culture. Aquac Res 45:1634–1647CrossRefGoogle Scholar
  47. Misra R, Guldhe A, Singh P, Rawat I, Stenström TA, Bux F (2015) Evaluation of operating conditions for sustainable harvesting of microagal biomass applying method using non sacrificial electrodes. Bioresour Technol 176:1–7CrossRefPubMedGoogle Scholar
  48. Nanton DA, Castell JD (1998) The effects of dietary fatty acids on the fatty acid composition of the harpacticoid copepod, Tisbe sp. for use as live food for marine fish larvae. Aquaculture 163:251–261CrossRefGoogle Scholar
  49. Napolitano GE, Ackman RG, Ratnayake WMN (1990) Fatty acid composition of three cultured algal species (Isochrysis galbana, Chaetoceros gracilis and Chaetoceros calcitrans) used as food for bivalve larvae. J World Aquacult Soc 21:122–130CrossRefGoogle Scholar
  50. Natrah FMI, Yusoff FM, Shariff M, Abas F, Mariana NS (2007) Screening of Malaysian indigenous microalgae for antioxidant properties and nutritional value. J Appl Phycol 19:711–718CrossRefGoogle Scholar
  51. Nell JA, O’Connor WA (1991) The evaluation of fresh algae and stored algal concentrates as a food source for Sydney rock oyster, Saccostrea commercialis (Iredale & Roughley), larvae. Aquaculture 99:277–284CrossRefGoogle Scholar
  52. Nunes M, Pereira A, Ferreira JM, Yasumaru F (2009) Evaluation of the microalgae paste viability produced in a mollusk hatchery in southern Brazil. J World Aquacult Soc 40:87–94CrossRefGoogle Scholar
  53. O’Connor WA, Heasman MP (1997) Diet and feeding regimens for larval doughboy scallops, Mimachlamys asperrima. Aquaculture 158:289–303CrossRefGoogle Scholar
  54. O’Connor WA, Nell JA, Diemar JA (1992) The evaluation of twelve algal species as food for juvenile Sydney rock oysters Saccostrea commercialis (Iredale and Roughley). Aquaculture 108:277–283Google Scholar
  55. Otero A, Fabregas J (1997) Changes in nutrient composition of Tetraselmis suecica cultured semi continuously with different concentrations and renewal rates. Aquaculture 159:111–123CrossRefGoogle Scholar
  56. Pitt R (2001) Review of sandfish rearing and breeding methods. SPC Beche-de-Mer Inf Bull 14:14–21Google Scholar
  57. Poelman E, De Pauw N, Jeurissen B (1997) Potential of electrolytic flocculation for recovery of microalgae. Resour Conserv Recycl 19:1–10CrossRefGoogle Scholar
  58. Ponis E, Robert R, Parisi G (2003) Nutritional value of fresh and concentrated algal diets for larval and juvenile Pacific oysters (Crassostrea gigas). Aquaculture 221:491–505CrossRefGoogle Scholar
  59. Pronker AE, Nevejan NM, Peene F, Geijsen P, Sorgeloos P (2008) Hatchery broodstock conditioning of the blue mussel Mytilus edulis (Linnaeus 1758). Part I. Impact of different micro-algae mixtures on broodstock performance. Aquac Int 16:297–307CrossRefGoogle Scholar
  60. Quinitio ET, Parado-Estepa FD (2003) Biology and hatchery of mud crabs Scylla spp. SEAFDEC Aquaculture Extension Manual No. 34. p 42Google Scholar
  61. Quinitio ET, Villegas CT (1982) Growth and macronutrient composition of Penaeus monodon fabricius larvae fed with Chaetoceros calcitrans and Tetraselmis chuii. Aquaculture 29:253–260CrossRefGoogle Scholar
  62. Ragg NLC, King N, Watts E, Morrish J (2010) Optimising the delivery of the key dietary diatom Chaetoceros calcitrans to intensively cultured Greenshell™ mussel larvae, Perna canaliculus. Aquaculture 210:270–280CrossRefGoogle Scholar
  63. Renaud SM, Parry DL, Luong-van T, Kuo C, Padovan A, Sammy N (1991) Effect of light intensity in the proximate biochemical composition of Isochrysis sp. and Nannocloropsis oculata for use in tropical aquaculture. J Appl Phycol 3:43–53CrossRefGoogle Scholar
  64. Renaud SM, Luong-van T, Parry DL (1999) The gross chemical and fatty acid composition of 18 species of tropical Australian microalgae for possible use in aquaculture. Aquaculture 170:147–159CrossRefGoogle Scholar
  65. Rico-Villa B, Le Coz JR, Mingant C, Robert R (2006) Influence of phytoplankton diet mixtures on microalgae consumption, larval development and settlement of the Pacific oyster Crassostrea gigas (Thunberg). Aquaculture 256:377–388CrossRefGoogle Scholar
  66. Rivero-Rodriguez S, Beaumont AR, Lora-Vilchis MC (2007) The effect of microalgal diets on growth, biochemical composition, and fatty acid profile of Crassostrea corteziensis (Hertlein) juveniles. Aquaculture 263:199–210CrossRefGoogle Scholar
  67. Samonte GPB, Espegadera CC, Caturao RD (1993) Economics of microalgae (Chaetoceros calcitrans) production using the multi-step method in the Philippines. Aquaculture 112:39–45CrossRefGoogle Scholar
  68. Seraspe EB, Gabotero S, de la Peña MR, Pahila IG, Amar EC (2014) Evaluation of dietary freeze-dried Chaetoceros calcitrans supplementation to control Vibrio harveyi infection on Penaeus monodon juvenile. Aquaculture 432:212–216CrossRefGoogle Scholar
  69. Servel MO, Claire C, Derrien A, Coiffard L, De-Roeck-Holtzhauer Y (1994) Fatty acid composition of some marine microalgae. Phytochemistry 36:691–693CrossRefGoogle Scholar
  70. Seto Inland Sea Farming Fisheries Associaton (SISFFA) (1964) Cultivation of live food organisms in the Yashima Station. I. Fertilizers for marine phytoplankton culture. Saibai-Gyogo News 2:4 (in Japanese)Google Scholar
  71. Shamsudin L (1992) Lipid and fatty acid composition of microalgae used in Malaysian aquaculture as live food for early stage of penaeid larvae. J Appl Phycol 4:371–378CrossRefGoogle Scholar
  72. Shang YC (1981) Aquaculture economics. Basic concepts and methods of analysis. Westview Press, BoulderGoogle Scholar
  73. Tantanasarit C, Englande AJ, Babel S (2013) Nitrogen, phosphorus and silicon uptake kinetics by marine diatom Chaetoceros calcitrans under high nutrient concentrations. J Exp Mar Biol Ecol 446:67–75CrossRefGoogle Scholar
  74. Toledo JD, Chavez D, Rodriguez J (2004) Studies on semi-intensive seed production of grouper (Epinephelus coioides). In: Rimmer MA, McBride S, Williams KC (eds) Advances in grouper aquaculture. ACIAR monograph 110, pp 55–60Google Scholar
  75. Uduman N, Bourniquel V, Danguah MK, Hoadley AFA (2011) A parametric study of electrocoagulation as a recovery process of marine microalgae for biodiesel production. Chem Eng J 174:249–257CrossRefGoogle Scholar
  76. Valenzuela-Espinosa E, Millán-Núñez R, Núñez-Cebrero F (1999) Biomass production and nutrient uptake by Isochrysis aff. galbana (clone T-ISO) cultured with a low cost alternative to the F/2 medium. Aquac Eng 20:135–147CrossRefGoogle Scholar
  77. Vandamme D, Pontes SC, Goiris K, Foubert I, Pinoy LJ, Muylaert K (2011) Evaluation for elecrto-coagulation-flocculation for harvesting Maine and freshwater microalgae. Biotechnol Bioeng 108:2320–2329CrossRefPubMedGoogle Scholar
  78. Volkman JK, Jeffrrey SW, Nichols PD, Rogers GI, Garland CD (1989) Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J Exp Mar Biol Ecol 128:219–240CrossRefGoogle Scholar
  79. Wangersky PJ, Parrish CC, Wangersky CP (1989) An automated mass culture for phytoplankton. J Shellfish Res 8:249–252Google Scholar
  80. Xin L, Hong-ying H, Ke G, Jia Y (2010) Growth and nutrient removal properties of a freshwater microalga Scenedesmus sp. LXI under different kind of nitrogen sources. Ecol Eng 36:379–381CrossRefGoogle Scholar
  81. Zhang R, Kong Z, Chen S, Ran Z, Ye M, Xu J, Zhou C, Liao K, Yan X (2017) The comparative study for physiological and biochemical mechanisms of Thalassiosira pseudonana and Chaetoceros calcitrans in response to different light intensities. Algal Res 27:89–98CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Milagros R. de la Peña
    • 1
    Email author
  • Annie Villa Franco
    • 1
  • Hermoso P. IgcasanJr
    • 1
  • Mary Dianne Grace N. Arnaldo
    • 1
  • Ramil M. Piloton
    • 1
  • Soledad S. Garibay
    • 2
  • Vicente T. Balinas
    • 2
  1. 1.Southeast Asian Fisheries Development Center, Aquaculture Department (SEAFDEC/AQD)TigbauanPhilippines
  2. 2.University of the Philippines VisayasMiagaoPhilippines

Personalised recommendations