Aquaculture International

, Volume 26, Issue 1, pp 185–202 | Cite as

Effect of formulated diets on the proximate composition and fatty acid profiles of sea urchin Paracentrotus lividus gonad

  • Ermelinda PratoEmail author
  • Mariachiara Chiantore
  • Maeve S. Kelly
  • Adam D. Hughes
  • Philip James
  • Maria Paola Ferranti
  • Francesca Biandolino
  • Isabella Parlapiano
  • Benedetto Sicuro
  • Giovanni Fanelli


Three formulated diets were tested to evaluate their effects on gonad quality in Paracentrotus lividus. Experiments were conducted in parallel by the Consiglio Nazionale delle Ricerche (CNR) of Taranto (trial 1) and the University of Genoa (trial 2), in land-based systems. In both trials, somatic and gonadsomatic index (GSI) were measured and the nutritional profile of the sea urchins has determined significant variations in the biochemical composition. Sea urchins fed the experimental diets contained higher levels of nutrients (protein and lipid and carbohydrate) compared to wild sea urchins. However, total polyunsaturated fatty acids (PUFAs), especially EPA and DHA, and the n-3/n-6 ratio were lower in urchins fed with formulated diets. In both trials, sea urchins fed with diet 2 (SABS) showed a similar profile with PUFAs higher than SAFAs and MUFAs, the highest UNS/SAT ratio, although the highest n3/n6 ratio was observed in the group fed diet 3 (CNR). Atherogenicity, thrombogenicity, and hypocholesterolemic/hypercholesterolemic indices showed the best values in sea urchins fed diet 2 in both trials.


Echinoculture Paracentrotus lividus Formulated diets Growth Gonadosomatic index Biochemical composition 



Total lipid


Fatty acid methyl ester


Gas chromatography


Fatty acids


Nutritional quality indexes


Atherogenicity index


Thrombogenicity index




Polyunsaturated fatty acids


Monounsaturated fatty acid


Saturated fatty acid


Eicosapentaenoic acid—C20:5n3


Docosahexaenoic acid—C22:6n3


Low-density lipoprotein cholesterol


High-density lipoprotein cholesterol


Stearidonic acid


Arachidonic acid


Docosaepentaenoic acid


Arachidonic acid




Coronary heart disease


Funding information

This research has been supported by ResUrch project: “REsearch and technological development to improve economic profitability and environmental Sustainability of sea URCHin farming” ( funded by the EU under the FP7 framework.


  1. Agatsuma Y, Sato M, Taniguchi K (2005) Factors causing brown colored gonads of the sea urchin Strongylocentrotus nudus in northern Honshu, Japan. Aquaculture 249:449–458CrossRefGoogle Scholar
  2. Angioni A, Addis P (2014) Characterization of the lipid fraction of wild sea urchin from the Sardinian sea (Western Mediterranean). J Food Sci 79:155–162CrossRefGoogle Scholar
  3. AOAC (1995) AOAC official methods of analysis, 16th edn. Association of Official Analytical Chemists, Washington DCGoogle Scholar
  4. Boudouresque CF, Verlaque M (2007) Ecology of Paracentrotus lividus. In: Lawrence JM (ed) Edible sea urchins: biology and ecology. Elsevier Science, Amsterdam, pp 243–283CrossRefGoogle Scholar
  5. Carboni S, Hughes AD, Atack T, Tocher DR, Migaud H (2013) Fatty acid profiles during gametogenesis in sea urchin (Paracentrotus lividus): effects of dietary inputs on gonad, egg and embryo profiles. Comp Biochem Physiol A 164:376–382CrossRefGoogle Scholar
  6. Cook EJ, Hughes AD, Orr H, Kelly MS, Black KD (2007) Influence of dietary protein on essential fatty acids in the gonadal tissue of the sea urchins Psammechinus miliaris and Paracentrotus lividus (Echinodermata). Aquaculture 273:586–594CrossRefGoogle Scholar
  7. De la Cruz-Garcia C, Lopez-Hernandez J, Gonzalez-Castro MJ, Rodriguez-Bernaldo De Quiros ARB, Simal-Lozano J (2000) Protein, amino acid and fatty acid contents in raw and canned sea urchin (Paracentrotus lividus) harvested in Galicia (NW Spain). J Sci Food Agric 80:1189–1192CrossRefGoogle Scholar
  8. Department of Health and Social Security Report on Health and Social (1984) Subjects No. 28. Diet and Cardiovascular Disease HMSO, London. ISBN 0 11 320859 6Google Scholar
  9. Department of Health, Nutritional Aspects of Cardiovascular Disease (1994) Report on Health and Social Subjects no. 46. London: H.M. Stationery Office. ISBN 10: 0113218753 ISBN 13: 9780113218752Google Scholar
  10. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  11. FAO (2012) The State of World Fisheries and Aquaculture. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  12. Fernandez C, Boudouresque CF (2000) Nutrition of the sea urchin Paracentrotus lividus (Echinodermata: Echinoidea) fed different artificial food. Mar Ecol Prog Ser 204:131–141CrossRefGoogle Scholar
  13. Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509PubMedGoogle Scholar
  14. Frantzis A, Gremare A (1992) Ingestion, absorption and growth rates of Paracentrotus lividus (Echinodermata: Echinoidea) fed different macrophytes. Mar Ecol Prog Ser 95:169–183CrossRefGoogle Scholar
  15. Galloway AWE, Brett MT, Holtgrieve GW, Ward EJ, Ballantyne AP, Burns CW, Kainz MJ, Muller-Navarra DC, Persson J, Ravet JL, Strandberg U, Taipale SJ (2015) A fatty acid based Bayesian approach for inferring diet in aquatic consumers. PLoS One, 10(6) doi: 10.1371/journal.pone.0129723Google Scholar
  16. Garaffo MA, Vassallo-Agius R, Nengas Y, Lembo E, Rando R, Maisano R, Dugo G, Giuffrida D (2011) Fatty acids profile, atherogenic (IA) and thrombogenic (IT) health lipid indices, of raw roe of blue fin tuna (Thunnus thynnus L.) and their salted product “Bottarga”. Food Nutr Sci 2:736–743CrossRefGoogle Scholar
  17. Gonzalez-Duran E, Castell JD, Robinson SMC, Blair TJ (2008) Effects of dietary lipids on the fatty acid composition and lipid metabolism of the green sea urchin Strongylocentrotus droebachiensis. Aquaculture 276:120–129.
  18. Grigorakis K (2007) Compositional and organoleptic quality of farmed and wiled gilthead sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) and factors affecting it: a review. Aquaculture 272:55–75CrossRefGoogle Scholar
  19. Hammer HS, Powell ML, Jones WT, Gibbs VK, Lawrence AL, Lawrence JM, Watts SA (2012) Effect of feed protein and carbohydrate levels on feed intake, growth, and gonad production of the sea urchin, Lytechinus variegatus. J World Aquacult Soc 43(2):145–158CrossRefGoogle Scholar
  20. Horrocks LA, Yeo YK (1999) Health benefits of docosahexaenoic acid (DHA). Pharmacol Res 40:211–225CrossRefPubMedGoogle Scholar
  21. Hyne RV, Sanchez-Bayo F, Bryan AD, Johnston EL, Mann RM (2009) Fatty acids composition of the estuarine Amphipod, Melita plumulosa (Zeidler): link between diet and fecundity. Environ Toxicol Chem 28:123–132CrossRefPubMedGoogle Scholar
  22. Hughes AD, Kelly MS, Barnes DKA, Catarino AI, Black KD (2006) The dual functions of sea urchin gonads are reflected in the temporal variations of their biochemistry. Mar Biol 148:789–798CrossRefGoogle Scholar
  23. James P, Heath P, Unwin MJ (2007) The effects of season, temperature and initial gonad codition on roe enhancement of the sea urchin Evechinus chloroticus. Aquaculture 270:115–131CrossRefGoogle Scholar
  24. de Jong-Westman M, March BE, Carefoot TH (1995) The effect of different nutrient formulations in artificial diets on gonad growth in the sea urchin Strongylocentrotus droebachiensis. Can J Zool 73:1495–1502CrossRefGoogle Scholar
  25. Kris-Etherton PM, Grieger JA, Etherton TD (2009) Dietary reference intakes for DHA and EPA. Prostaglandins Leukot Essent Fat Acids 81:99–104CrossRefGoogle Scholar
  26. Lawrence JM, Cao X, Chang Y, Wang P, Yu Y, Lawrence AL, Watts SA (2009) Temperature effect on feed consumption, absorption, and assimilation efficiencies and production of the sea urchin Strongylocentrotus intermedius. J Shell Res 28:389–395CrossRefGoogle Scholar
  27. Lawrence J, Chang YQ, Cao XB, Lawrence A, Watts S (2011) Potential for uni production by Strongylocentrotus intermedius using dry formulated feeds. J World Aquac Soc 42:253–260CrossRefGoogle Scholar
  28. Liyana-Pathirana C, Shahidi F, Whittick A (2002) The effect of an artificial diet on the biochemical composition of the gonads of the sea urchin (Strongylocentrotus droebachiensis). Food Chem 79:461–472CrossRefGoogle Scholar
  29. Marsh AD, Watts SA (2007) Biochemical and energy requirements of gonad development (Chapter 3). In: Lawrence JM (ed), Edible sea urchins: biology and ecology. Elsevier, Amsterdam, pp. 35–53Google Scholar
  30. McBride SC, Price RJ, Tom PD, Lawrence JM, Lawrence AL (2004) Comparison of gonad quality factors: colour, hardness and resilience, of Strongylocentrotus franciscanus between sea urchins fed prepared feed or algal diets and sea urchins harvested from the Northern California fishery. Aquaculture 233:405–422CrossRefGoogle Scholar
  31. McLaughlin G, Kelly MS (2001) Effect of artificial diets containing carotenoid-rich microalgae on gonad growth and color in the sea urchin Psammechinus miliaris (Gmelin). J Shellfish Res 20:377–382Google Scholar
  32. Mol S, Baygar T, Varlik C, Tosun ŞY (2008) Seasonal variations in yield, fatty acids, amino acids and proximate compositions of sea urchin (Paracentrotus lividus) roe. J Food Drug Anal 16:68–74 Google Scholar
  33. Montero-Torreiro MF, Garcia-Martinez P (2003) Seasonal changes in the biochemical composition of body components of the sea urchin, Paracentrotus lividus, in Lorbe ́ (Galicia, north-western Spain). J Mar Biol Assoc UK 83:575–581CrossRefGoogle Scholar
  34. Pearce CM, Daggett TL, Robinson SMC (2002) Effect of protein source ratio and protein concentration in prepared diets on gonad yield and quality of the green sea urchin, Strongylocentrotus droebachiensis. Aquaculture 214:307–332CrossRefGoogle Scholar
  35. Pearce M, Daggat TL, Robinson SMC (2004) Effect of urchin size and diet on gonad yield and quality in the green sea urchin (Strongylocentrotus droebachiensis). Aquaculture 233:377–367CrossRefGoogle Scholar
  36. R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. URL Accessed 08 Feb 2008
  37. Robinson SMC, Castell JD, Kennedy EJ (2002) Developing suitable colour in the gonads of cultured sea urchins (Strongylocentrotus droebachiensis). Aquaculture 206:289–303CrossRefGoogle Scholar
  38. Shpigel M, McBride SC, Marciano S, Ron S, Ben-Amotz A (2005) Improving gonad colour and somatic index in the European sea urchin Paracentrotus lividus. Aquaculture 245:101–109CrossRefGoogle Scholar
  39. Siikavuopio SI, Christiansen JS, Sæther BS, Dale T (2007) Seasonal variation in feed intake under constant temperature and natural photoperiod in the green sea urchin (Strongylocentrotus droebachiensis). Aquaculture 272:382–334CrossRefGoogle Scholar
  40. Simopoulos AP (2006) Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed Pharmacother 60:502–507CrossRefPubMedGoogle Scholar
  41. Stanec M, Borejszo Z, Dabrowski J, Janicki B (2011) Fat and cholesterol content and fatty acid profiles in edible tissue of spiny-cheek crayfish, Orconectes limosus (Raf) from Lake Goplo (Poland). Arch Pol Fish 19:241–248. Google Scholar
  42. Takayama M, Itoh S, Nagasaki T, Tanimizu I (1977) A new enzymatic method for determination of serum choline-containing phospholipids. Clin Chim Acta 79:93–98CrossRefPubMedGoogle Scholar
  43. Trinder P (1969) Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J Clin Pathol 22:158–161CrossRefPubMedPubMedCentralGoogle Scholar
  44. Ulbricht TL, Southgate DAT (1991) Coronary heart disease: seven dietary factors. Lancet 338:985–992CrossRefPubMedGoogle Scholar
  45. Woods CM, James P, Moss G, Wright J, Siikavuopio SI (2008) A comparison of the effect of urchin size and diet on gonad yield and quality in the sea urchin Evechinus chloroticus Valenciennes. Aquac Int 16:49–68CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ermelinda Prato
    • 1
    Email author
  • Mariachiara Chiantore
    • 2
    • 3
  • Maeve S. Kelly
    • 4
  • Adam D. Hughes
    • 4
  • Philip James
    • 5
  • Maria Paola Ferranti
    • 2
  • Francesca Biandolino
    • 1
  • Isabella Parlapiano
    • 1
  • Benedetto Sicuro
    • 6
  • Giovanni Fanelli
    • 1
  1. 1.CNR-IAMC Istituto per l’Ambiente Marino CostieroUOS TarantoTarantoItaly
  2. 2.Università degli Studi di Genova, DiSTAVGenoaItaly
  3. 3.CNR-IBF, Institute of Biophysics, UOS GenovaGenoaItaly
  4. 4.Scottish Association for Marine Science, Dunstaffnage Marine LaboratoryObanUK
  5. 5.Norwegian Institute of Fisheries and Aquaculture ResearchTromsoNorway
  6. 6.Dipartimento di Scienze VeterinarieUniversità di TorinoTorinoItaly

Personalised recommendations