Advertisement

Aquaculture International

, Volume 24, Issue 6, pp 1725–1745 | Cite as

Mass balance of fishponds: are they sources or sinks of phosphorus?

  • Jan PotužákEmail author
  • Jindřich Duras
  • Bořek Drozd
Carp pond aquaculture, product processing and quality

Abstract

Fishponds exhibit high natural retention potential for phosphorus, which enters the ponds from non-point, diffuse and point sources, as well as from aquaculture management. Results of phosphorus mass balance monitoring of nine large fishponds (60–449 ha) over 2010–2014 revealed total phosphorus retention ranging between −66 % (sink) and +52 % (release) of the P loads from inflows, i.e. specific P retention varied between −7.83 g m−2 (sink) and 1.00 g m−2 (release) of surface area, per one fish production cycle. Retention of P was eliminated by application of fertilizers (with simultaneous fish feed application) during fish production process and/or by massive P release from fishpond sediments after previous heavy loads. P retention could be increased by preference of surface water outflow instead of bottom discharge and/or also by minimizing of emissions of suspended sediment particles during a fish harvesting. The real role of fishponds in transport processes of P throughout a watershed could be eruditely assessed only by following newly proposed method called “new approach” when P input (via inflows) and P output (via outflows) are compared with natural fishpond ability to retain P, which is determined by a simple model proposed by Hejzlar et al. (2006). For evaluation of effect of actual fishery management, the “culture-balance” method is suitable too. If the P inputs (stocked fish, fertilizing, feeding) and outputs (harvested fish) derived from fishery practice were in balance, the P retention did not decline. However, in condition of inputs > outputs, the P retention appreciably ceased or was totally eliminated. It was concluded that fishponds could serve as an important sink of P transported throughout a watershed even under semi-intensive fish (common carp) production condition.

Keywords

Eutrophication Fish Fishery management Phosphorus retention Pond Water quality 

Notes

Acknowledgments

This study was financially supported by the Ministry of Education, Youth and Sports of the Czech Republic—projects “CENAKVA” (No. CZ.1.05/2.1.00/01.0024) and “CENAKVA II” (No. LO1205 under the NPU I program). The authors are grateful to fishery companies Rybářství Třeboň a.s., Rybářství Hluboká cz. s.r.o, Blatenská ryba, s.r.o and Rybářství Kardašova Řečice s.r.o. for providing fishery production data.

References

  1. Adámek Z, Maršálek B (2013) Bioturbation of sediments by benthic macroinvertebrates and fish and its implication for pond ecosystems: a review. Aquac Int 21(1):1–17CrossRefGoogle Scholar
  2. Adámek Z, Linhart O, Kratochvíl M, Flajšhans M, Randák T, Policar T, Masojídek J, Kozák P (2012) Aquaculture in the Czech Republic in 2012: modern European prosperous sector based on thousand-year history of pond culture. Aquac Eur 37(2):5–14Google Scholar
  3. Arlinghaus R, Mehner T (2003) Socio-economic characterisation of specialised common carp (Cyprinus carpio L.) anglers in Germany, and implications for inland fisheries management and eutrophication control. Fish Res 61:19–33CrossRefGoogle Scholar
  4. Banas D, Masson G, Leglize L, Pihan J-C (2002) Discharge of sediments, nitrogen (N) and phosphorus (P) during the emptying of extensive fishponds: effect of rain-fall and management practices. Hydrobiologia 472:29–38CrossRefGoogle Scholar
  5. Barszczewski J, Kaca E (2012) Water retention in ponds and the improvement of its quality during carp production. J Water Land Dev 17:31–38CrossRefGoogle Scholar
  6. Billard R, Sevrin-Reyssac J (1993) Negative and positive impacts of pond fish culture on the environment. Production, environment and quality. Eur Aquac Soc 18:17–29Google Scholar
  7. Brabrand A, Faafeng BA, Nilssen JPM (1990) Relative importance of phosphorus supply to phytoplankton production: fish excretion versus external loading. Can J Fish Aquat Sci 47:364–372CrossRefGoogle Scholar
  8. Butz I (1988) Situation of fish-farm effluents in Austria. Monistettuja Julkaisuja (Helsinki) 74:4–12Google Scholar
  9. Butz I, Donner H (1991) Beeinflussung des Vorfluters durch die Abfischung von Karpfenteichen. Osterr Fisch 44(5–6):123–141Google Scholar
  10. Čermák B, Cempírková R (2008) Conventional and ecological feeds. University of South Bohemia České Budějovice, České Budějovice (in Czech) Google Scholar
  11. Chakrabarty D, Das SK (2007) Bioturbation-induced phosphorus release from an insoluble phosphate source. Biosystems 90(2):309–313CrossRefPubMedGoogle Scholar
  12. Dulic Z, Subakov-Simic G, Ciric M, Relic R, Lakic N, Stankovic M, Markovic Z (2010) Water quality in semi-intensive carp production system using three different feeds. Bulg J Agric Sci 16(3):266–274Google Scholar
  13. Duras J, Potužák J (2012) Phosphorus mass balance in selected production and recreational fishponds. Vodní hospodářství 62(6):210–216 (in Czech) Google Scholar
  14. Duras J, Potužák J, Marcel M, Pechar L (2015) Fishponds and water quality. Vodní hospodářství 65(7):16–24 (in Czech) Google Scholar
  15. EN ISO 10304-1 (2009) Water quality—determination of dissolved anions by liquid chromatography of ions—Part 1: determination of bromide, chloride, fluoride, nitrate, nitrite, phosphate and sulfateGoogle Scholar
  16. EN 12260 (2003) Water quality. Determination of nitrogen. Determination of bound nitrogen (TNb), following oxidation to nitrogen oxidesGoogle Scholar
  17. EN ISO 17294-2 (2004) Water quality—application of inductively coupled plasma mass spectrometry (ICP-MS)—Part 2: determination of 62 elementsGoogle Scholar
  18. Gál D, Pekár F, Kosáros T, Kerepeczki E (2013) Potential of nutrient reutilisation in combined intensive–extensive pond systems. Aquac Int 21:927–937CrossRefGoogle Scholar
  19. Hejzlar J, Šámalová K, Boers P, Kronvang B (2006) Modelling phosphorus retention in lakes and reservoirs. Water Air Soil Pollut Focus 6:487–494CrossRefGoogle Scholar
  20. Hlaváč D, Adámek Z, Hartman P, Másílko J (2014) Effects of supplementary feeding in carp ponds on discharge water quality: a review. Aquac Int 22(1):299–320CrossRefGoogle Scholar
  21. Huser BJ, Bajer PG, Chizinski CJ, Sorensen PW (2016) Effects of common carp (Cyprinus carpio) on sediment mixing depth and mobile phosphorus mass in the active sediment layer of a shallow lake. Hydrobiologia 763(1):23–33CrossRefGoogle Scholar
  22. ISO 10260 (1992) Water quality, measurement of biochemical parameters; spectrometric determination of chlorophyll-a concentration. Beuth Verlag GmbH Berlin-Wien-ZürichGoogle Scholar
  23. ISO 7150-1 (1994) Water quality—determination of ammonium. Part 1: manual spectrometric methodGoogle Scholar
  24. ISO 9963-1 (1994) Water quality—determination of alkalinity. Part 1: determination of total and composite alkalinityGoogle Scholar
  25. Kaushik SJ (1993) Nutrient requirements, supply and utilization in the context of carp culture. Aquaculture 129:225–241CrossRefGoogle Scholar
  26. Kestemont P (1995) Different systems of carp production and their impacts on the environment. Aquaculture 129:347–372CrossRefGoogle Scholar
  27. Knösche R, Scheckenbach K, Pfeifer M, Weissenbach H (2000) Balances of phosphorus and nitrogen in carp ponds. Fish Manag Ecol 7:15–22CrossRefGoogle Scholar
  28. Kořínek V, Fott J, Fuksa J, Lellák J, Pražáková M (1987) Carp ponds of Central Europe. In: Michael RG (ed) Managed aquatic ecosystems, ecosystems of the world. Elsevier, AmsterdamGoogle Scholar
  29. Lamarra VA Jr (1975) Digestive activities of carp as a major contributor to the nutrient loading of lakes. Verh Int Ver Limmol 19:2461–2468Google Scholar
  30. Niesar M, Arlinghaus R, Rennert B, Mehner T (2004) Coupling insights from a carp, Cyprinus carpio, angler survey with feeding experiments to evaluate composition, quality and phosphorus input of groundbait in coarse fishing. Fish Manag Ecol 11:225–235CrossRefGoogle Scholar
  31. Nürnberg GK (1985) Availability of phosphorus upwelling from iron-rich anoxic hypolimnia. Arch Hydrobiol 104:459–476Google Scholar
  32. Nürnberg GK, Peters RH (1984) The importance of internal phosphorus load to the eutrophication of lakes with anoxic hypolimnia. Verh Int Ver Limnol 22:190–194Google Scholar
  33. Opuszyński K (1980) The role of fishery management in counteracting eutrophication processes. In: Hypertrophic ecosystems, vol 2. Developments in Hydrobiology, Springer, Netherlands, pp 263–269Google Scholar
  34. Pechar L (1995) Long-term changes in fish pond management as an unplanned ecosystem experiment: importance of zooplankton structure, nutrients and light for species composition of cyanobacterial blooms. Wat Sci Technol 32(4):187–196CrossRefGoogle Scholar
  35. Pechar L (2000) Impacts of long-term changes in fishery management on the trophic level water quality in Czech fish ponds. Fish Manag Ecol 7(1–2):23–31CrossRefGoogle Scholar
  36. Pechar L (2015) A hundred years of fishpond eutrophication—combined effect of nutrient enhancement and increasing of fish stock. Vodní Hospodářství 65(7):1–6 (in Czech) Google Scholar
  37. Pechar L, Přikryl I, Faina R (2002) Hydrobiological evaluation of Třeboň fishponds at the end of the nineteenth century. In: Květ J, Jeník J, Soukupová L (eds) Freshwater wetlands and their sustainable future. UNESCO and The Parthenon Publishing Group, ParisGoogle Scholar
  38. Potužák J, Duras J (2015) Nutrient retention in fishponds—importance, assessment and possible use. Vodní Hospodářství 65(7):7–15 (in Czech) Google Scholar
  39. Potužák J, Hůda J, Pechar L (2007) Changes in fish production effectivity in eutrophic fishponds—impact of zooplankton structure. Aquac Int 15(3–4):201–210CrossRefGoogle Scholar
  40. Potužák J, Duras J, Borovec J, Rucki J (2010a) Rybníky Dehtář a Hejtman—látkové bilance. Sborník semináře Revitalizace Orlické nádrže, 12.-13. 10. 2010, Písek, Česká republika. Vysoká škola technická a ekonomická v Českých Budějovicích, 119–136 (in Czech) Google Scholar
  41. Potužák J, Duras J, Borovec J, Rohlík V, Langhansová M, Kubelka A (2010b) První výsledky živinové bilance rybníka Rožmberk s posouzením vlivu na řeku Lužnici. Sborník semináře Revitalizace Orlické nádrže, 12.-13. 10. 2010, Písek, Česká republika. Vysoká škola technická a ekonomická v Českých Budějovicích, 99–118 (in Czech) Google Scholar
  42. Psenner R, Pucsko R (1988) Phosphorus fractionation: advantages and limits of the method for the study of sediment P origins and interactions. Arch Hydrobiol Beih Ergebn Limnol 30:43–59Google Scholar
  43. Ritvo G, Kochba M, Avnimelech Y (2004) The effect of common carp bioturbation on fishpond bottom soil. Aquaculture 242(1–4):345–356CrossRefGoogle Scholar
  44. Rothschein J (1983) Phosphorus cycle and fish in water supply reservoirs. Vodní Hospodářství B33:9–13 (in Slovak) Google Scholar
  45. Schneider O, Sereti V, Eding EH, Verreth JAJ (2004) Analysis of nutrient flows in integrated intensive aquaculture systems. Aquac Eng 32:379–401CrossRefGoogle Scholar
  46. Sharpley A, Moyer B (2000) Phosphorus forms in manure and compost and their release during simulated rainfall. J Environ Qual 29:1462–1469CrossRefGoogle Scholar
  47. Steiner T, Mosenthin R, Zimmermann B, Greiner R, Roth S (2007) Distribution of phytase activity, total phosphorus and phytate phosphorus in legume seeds, cereals and cereal by products as influenced by harvest year and cultivar. Anim Feed Sci Technol 133(3–4):320–334CrossRefGoogle Scholar
  48. Sterner RW, George NB (2000) Carbon, nitrogen, and phosphorus stoichiometry of cyprinid fishes. Ecology 81(1):127–140CrossRefGoogle Scholar
  49. Vallod D, Sarrazin B (2010) Water quality characteristics for draining and extensive fish farming pond. Hydrol Sci J 55(3):394–402CrossRefGoogle Scholar
  50. Vollenweider RA (1976) Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem Ist Ital Idrobiol 33:53–83Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jan Potužák
    • 1
    • 2
    Email author
  • Jindřich Duras
    • 2
    • 3
  • Bořek Drozd
    • 2
  1. 1.Water Management Laboratory, State EnterpriseVltava River AuthorityČeské BudějoviceCzech Republic
  2. 2.Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of WatersUniversity of South Bohemia in České Budějovice České BudějoviceCzech Republic
  3. 3.Department of Water Management Planning, State EnterpriseVltava River AuthorityPlzeňCzech Republic

Personalised recommendations