Aquaculture International

, Volume 24, Issue 6, pp 1591–1606 | Cite as

Environmental quality and natural food performance at feeding sites in a carp (Cyprinus carpio) pond

  • Z. Adámek
  • M. Mrkvová
  • J. Zukal
  • K. Roche
  • L. Mikl
  • L. Šlapanský
  • M. Janáč
  • P. Jurajda
Carp pond aquaculture, product processing and quality


Just like other domesticated animals, common carp (Cyprinus carpio) are able to learn where food can easily be obtained. As a result, carp in semi-intensive polyculture ponds could conceivably restrict their main activity centres to supplemental feeding sites, leading to lowered exploitation of natural food resources (zooplankton and macrozoobenthos) and localised degradation of environmental conditions. At two semi-intensive ponds in southern Moravia (Czech Republic), areas around feeding sites displayed significantly reduced oxygen concentration and saturation (mainly p < 0.001). Likewise, temperature, pH and transparency also decreased significantly at feeding sites (mainly p < 0.05), while turbidity increased. While there was no significant difference in zooplankton biovolume at feeding and non-feeding sites, zoobenthos density and biomass were significantly lower at feeding sites (mainly p < 0.01). The feeding behaviour of carp, therefore, led to significant changes in both abiotic and biotic conditions at supplemental feeding sites.


Pond aquaculture Supplemental feeding Zooplankton Macrozoobenthos Oxygen Turbidity 



This study was financially supported by the Ministry of Education, Youth and Sports of the Czech Republic—projects “CENAKVA” (No. CZ.1.05/2.1.00/01.0024) and “CENAKVA II” (No. LO1205 under the NPU I program), GAČR Project ECIP P505/12/G112 and OP Fisheries Project No. CZ 1.25/3.4.00/13.00451. We thank Pohořelice Fisheries Ltd. (Rybníkářství Pohořelice s.a.) and all their staff for allowing us access to their fishponds and for help throughout the study.


  1. Adámek Z, Maršálek B (2013) Bioturbation of sediments by benthic macroinvertebrates and fish and its implication for pond ecosystems: a review. Aquac Int 21:1–17CrossRefGoogle Scholar
  2. Adámek Z, Sukop I, Moreno Rendón P, Kouřil J (2003) Food competition between 2+ tench (Tinca tinca L.), common carp (Cyprinus carpio L.) and bigmouth buffalo (Ictiobus cyprinellus Val.) in pond polyculture. J Appl Ichthyol 19:165–169CrossRefGoogle Scholar
  3. Adámek Z, Linhart O, Kratochvíl M et al (2012) Aquaculture the Czech Republic in 2012: modern European prosperous sector based on thousand-year history of pond culture. Aquac Eur 37:5–14Google Scholar
  4. Adámek Z, Helešic J, Maršálek B, Rulík M (2014) Applied Hydrobiology. FROV JU VodňanyGoogle Scholar
  5. Anton-Pardo M, Adámek Z (2015) The role of zooplankton as food in carp pond farming: a review. J Appl Ichthyol 31(Suppl. 2):7–14CrossRefGoogle Scholar
  6. Anton-Pardo M, Hlaváč D, Másílko J, Hartman P, Adámek Z (2014) Natural diet of mirror and scaly carp (Cyprinus carpio) phenotypes in earth ponds. Folia Zool 63:229–237Google Scholar
  7. Billard R (ed) (1999) Carp: biology and culture. Springer Praxis Publishing, ChichesterGoogle Scholar
  8. Bosma RH, Verdegem MCJ (2011) Sustainable aquaculture in ponds: principles, practices and limits. Livest Sci 139:58–68CrossRefGoogle Scholar
  9. Broyer J, Curtet L (2012) Biodiversity and fish farming intensification in French fishpond systems. Hydrobiologia 694:205–218CrossRefGoogle Scholar
  10. Céréghino R, Boix D, Cauchie HM et al (2014) The ecological role of ponds in a changing world. Hydrobiologia 723:1–6CrossRefGoogle Scholar
  11. Chakraborty SC, Ross LG, Ross B (1992) Specific dynamic action and feeding metabolism in common carp, Cyprinus carpio L. Comp Biochem Phys A 103:809–815CrossRefGoogle Scholar
  12. Ciric M, Subakov-Simic G, Dulic Z et al (2015) Effect of supplemental feed type on water quality, plankton and benthos availability and carp (Cyprinus carpio L.) growth in semi-intensive monoculture ponds. Aquac Res 46:777–788CrossRefGoogle Scholar
  13. Condie SA, Webster IT (2002) Stratification and circulation in a shallow turbid waterbody. Environ Fluid Mech 2:177–196CrossRefGoogle Scholar
  14. Costa-Pierce BA, Pullin RSV (1989) Stirring ponds as a possible means of increasing aquaculture production. Aquabyte 2:5–7Google Scholar
  15. Dulic Z, Subakov-Simic G, Ciric M et al (2010) Water quality in semi-intensive carp production system using three different feeds. Bulg J Agric Sci 16:266–274Google Scholar
  16. Füllner G (2015) Traditional feeding of common carp and strategies for replacement of fish meal. In: Pietzsch C, Hirsch PE (eds) Biology and ecology of carp. CRC Press, Taylor and Francis Group, Boca RatonGoogle Scholar
  17. Garcia-Berthou E (2001) Size- and depth-dependent variation in habitat and diet of the common carp (Cyprinus carpio). Aquat Sci 63:466–476CrossRefGoogle Scholar
  18. Hlaváč D, Adámek Z, Hartman P, Másílko J (2014) Effects of supplementary feeding in carp ponds on discharge water quality: a review. Aquac Int 22:299–320CrossRefGoogle Scholar
  19. Hlaváč D, Másílko J, Hartman P et al (2015) Effects of common carp (Cyprinus carpio Linnaeus, 1758) supplementary feeding with modified cereals on pond water quality and nutrient budget. J Appl Ichthyol 31(Suppl. 2):30–37CrossRefGoogle Scholar
  20. Huntingford FA (2004) Implications of domestication and rearing conditions for the behaviour of cultivated fishes. J Fish Biol 65(Supppl. A):122–142CrossRefGoogle Scholar
  21. Huser B, Bartels P (2015) Feeding ecology of carp. In: Pietzsch C, Hirsch PE (eds) Biology and ecology of carp. CRC Press, Taylor and Francis Group, Boca RatonGoogle Scholar
  22. Jirásek J, Adámek Z, Pha NN (1977) Effect of a type of food on oxygen consumption by carp fry. Živ Výr 22:833–838Google Scholar
  23. Kaushik SJ (2013) Feed management and on-farm feeding practices of temperate fish with special reference to salmonids. In: Hasan MR and New MB (eds) On-farm feeding and feed management in aquaculture. FAO Fisheries and Aquaculture Technical Paper No. 583, RomeGoogle Scholar
  24. Kirk KL (1991) Inorganic particles alter competition in grazing plankton: the role of selective feeding. Ecology 72:915–923CrossRefGoogle Scholar
  25. Kloskowski J (2011) Differential effects of age-structured common carp (Cyprinus carpio) stocks on pond invertebrate communities: implications for recreational and wildlife use of farm ponds. Aquac Int 19:1151–1164CrossRefGoogle Scholar
  26. Matěna J (1990) Succession of Chironomus Meigen species (Diptera, Chrionomidae) in newly filled ponds. Int Revue ges Hydrobiol 75(1):45–57CrossRefGoogle Scholar
  27. Musil P (2006) A review of the effects of intensive fish production on waterbird breeding populations. In: Boere GC, Galbraith CA, Stroud DA (eds) Waterbirds around the World. The Stationery Office, EdinburghGoogle Scholar
  28. Ozbay H (2008) An enclosure experiment to test the effects of common carp on the water quality in a shallow Turkish soda lake. Fresenius Environ Bull 17:2078–2082Google Scholar
  29. Panek FM (1987) Biology and ecology of carp. In: Cooper EL (ed) Carp in North America. American Fisheries Society, Bethesda, pp 1–15Google Scholar
  30. Pechar L, Přikryl I, Faina R (2002) Hydrobiological evaluation of Třeboň fishponds in the end of the nineteenth century. In: Květ J, Jeník J, Soukupová L (eds) Freshwater wetlands and their sustainable future. Paris, pp 31–61Google Scholar
  31. Potužák J, Hůda J, Pechar L (2007) Changes in fish production effectivity in eutrophic fishponds: impact of zooplankton structure. Aquac Int 15:201–210CrossRefGoogle Scholar
  32. Pucher J, Mayrhofer R, El-Matbouli M, Focken U (2016) Effects of modified pond management on limnological parameters in small scale aquaculture ponds in mountainous Northern Vietnam. Aquac Res 47:56–70CrossRefGoogle Scholar
  33. R Core Team (2012) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. ISBN: 3-900051-07-0.
  34. Rahman MM (2015) Role of common carp (Cyprinus carpio) in aquaculture production systems. Front Life Sci 8:399–410CrossRefGoogle Scholar
  35. Rahman MM, Jo Q, Gong YG et al (2008) A comparative study of common carp (Cyprinus carpio L.) and calbasu (Labeo calbasu Hamilton) on bottom soil resuspension, water quality, nutrient accumulations, food intake and growth of fish in simulated rohu (Labeo rohita Hamilton) ponds. Aquaculture 285:78–83CrossRefGoogle Scholar
  36. Rahman MM, Hossain MY, Jo Q et al (2009) Ontogenetic shift in dietary preference and low dietary overlap in rohu (Labeo rohita) and common carp (Cyprinus carpio) in semi-intensive ponds. Ichthyol Res 56:28–36CrossRefGoogle Scholar
  37. Schlott K, Bauer C, Fichtenbauer M et al (2011) Bedarfsorientierte Fütterung in der Karpfenteichwirtschaft: Das Absetzvolumen von Zooplankton. Schriftenreihe des Bundesamtes fur Wasserwirtschaft, Gebharts 35 Google Scholar
  38. Šumberová K, Ducháček M, Kubešová S (2010) Flora and vegetation diversity on special types of ponds in the Czech Republic. In: 4th Conference of the European Pond Conservation Network, Berlin, 1–4 June 2010Google Scholar
  39. Vilizzi L, Tarkan AS, Copp GH (2015) Experimental evidence from causal criteria analysis for the effects of common carp Cyprinus carpio on freshwater ecosystems: a global perspective. Rev Fish Sci Aquac 23:253–290CrossRefGoogle Scholar
  40. Všetičková L, Adámek Z, Rozkošný M, Sedláček P (2012) Effects of semi-intensive carp pond farming on discharged water quality. Acta Ichthyol Piscat 42:223–231CrossRefGoogle Scholar
  41. White P (2013) Environmental consequences of poor feed quality and feed management. In: Hasan MR and New MB (eds) On-farm feeding and feed management in aquaculture. FAO Fisheries and Aquaculture Technical Paper No. 583, RomeGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of WatersUniversity of South Bohemia in České BudějoviceČeské BudějoviceCzech Republic
  2. 2.Institute of Vertebrate BiologyAcademy of Sciences of the Czech RepublicBrnoCzech Republic

Personalised recommendations