Aquaculture International

, Volume 25, Issue 1, pp 499–514 | Cite as

Estimation of genetic parameters for growth traits in a hatchery population of gilthead sea bream (Sparus aurata L.)

  • Tiago FernandesEmail author
  • Marine Herlin
  • María Dolores López Belluga
  • Guillermo Ballón
  • Paulino Martinez
  • Miguel A. Toro
  • Jesús Fernández


The gilthead sea bream (Sparus aurata L.) is one of the most important marine fish species produced in southern European countries. Over the last two decades, microsatellites have become a powerful tool for DNA studies of fish populations, making it possible to establish existing genealogical relationships between individuals and to perform reliable estimates of genetic parameters. In the present study, a total of 7959 fish (494 breeders and 7465 fry) were genotyped using two rounds of multiplex reactions with four microsatellite markers each. Offspring were assigned based on the Mendelian exclusion principles, using FAP program. Genealogical information was successfully obtained for more than 83 % of the progeny. Heritability estimates were close to 0.40 in all cases and for all considered traits. The lowest value was for the length at first age (350 ± 6 dph) and the highest for the length at the second age (500 ± 7 dph). The heritabilities for the first and the second weight were similar although somewhat higher for the second age, but not significant. The highest genetic correlations were found between weight and length at the same age and the lowest between weight and length at different ages. Based on the results of this study, it seems reasonable to expect that the implementation of a breeding program for improved growth in this population of gilthead sea bream will offer comparable performances to those achieved in other populations and species of great success in aquaculture around the world.


Heritability Sparus aurata Gilthead sea bream Genetic correlation Genealogy Microsatellites Parentage estimation 


  1. Antonello J, Massault C, Franch R, Haley C, Pellizzari C, Bovo G, Patarnello T, Koning D, Bargelloni L (2009) Estimates of heritability and genetic correlation for body length and resistance to fish pasteurellosis in the gilthead sea bream (Sparus aurata L.). Aquaculture 298:29–35CrossRefGoogle Scholar
  2. APROMAR (2015) La acuicultura en España. (
  3. Batargias C, Dermitzakis E, Magoulas A, Zouros E (1999) Characterization of six polymorphic microsatellite markers in gilthead sea bream, Sparus aurata. Mol Ecol 8:897–898PubMedGoogle Scholar
  4. Borrell Y, Gallego V, García-Fernández C, Mazzeo I, Pérez L, Asturiano JF, Carleos CE, Vázquez E, Sánchez JA, Blanco G (2011) Assessment of parental contributions to fast- and slow-growing progenies in the sea bream Sparus aurata L. using a new multiplex PCR. Aquaculture 314:58–65CrossRefGoogle Scholar
  5. Brown RC, Tsalavouta M, Terzoglou V, Magoulas A, McAndrew BJ (2005a) Additional microsatellites for Sparus aurata and cross-species amplification within the Sparidae family. Mol Ecol 5:605–607CrossRefGoogle Scholar
  6. Brown RC, Woolliams JA, McAdrew BJ (2005b) Factors influencing effective population size in commercial populations of gilthead sea bream, Sparus aurata. Aquaculture 247:219–225CrossRefGoogle Scholar
  7. Castro J, Pino A, Hermida M, Bouza C, Chavarrías D, Merino P, Sánchez L, Martínez P (2007) A microsatellite marker tool for parentage assessment in gilthead sea bream (Sparus aurata). Aquaculture 272(Supplement 1):210–216CrossRefGoogle Scholar
  8. Chavanne H, Parati K, Cambuli C, Capoferri R, Jiménez CA, Galli A (2014) Microsatellites markers to depict the reproductive and genetic patterns of farmed gilthead sea bream (Sparus aurata): illustration by a case study on mass spawning. Aquacult Res. doi: 10.1111/are.12013 Google Scholar
  9. Chavanne H, Janssen K, Hofherr J, Aquatrace Consortium, Contini F, Haffray P, Komen H, Nielsen EE, Bargelloni L (2016) A comprehensive survey on selective breeding programs and seed market in the European aquaculture fish industry. Int Aquacult. doi: 10.1007/s10499-016-9985-0 Google Scholar
  10. Franch R, Louro B, Tsalavouta M, Chatziplis D, Tsigenopoulos CS, Sarropoulou E, Antonello J, Magoulas A, Patarnello T, Power DM, Kotoulas G, Bargelloni L (2006) A genetic linkage map of the hermaphrodite teleost fish Sparus aurata L. Genetics 174:851–861CrossRefPubMedPubMedCentralGoogle Scholar
  11. García-Celdrán M, Ramis G, Manchado M, Estévez A, Afonso JM, María-Dolores E, Peñalver J, Armero E (2015) Estimates of heritabilities and genetic correlations of growth and external skeletal deformities at different ages in a reared gilthead sea bream (Sparus aurata L.) population sourced from three broodstocks along the Spanish coasts. Aquaculture 445:33–41CrossRefGoogle Scholar
  12. Gjedrem T, Thodesen J (2005) Selection. In: Gjedrem T (ed) Selection and breeding programs in aquaculture. Springer, Berlin, pp 89–111CrossRefGoogle Scholar
  13. Gjerde B (1986) Growth and reproduction in fish and shellfish. Aquaculture 57:37–55CrossRefGoogle Scholar
  14. Jones AG, Kvarnemo C, Moore GI, Simmons LW, Avise JC (1998) Microsatellite evidence for monogamy and sex-biased recombination in the Western Australian seahorse, Hippocampus angustus. Mol Ecol 7:1497–1505CrossRefPubMedGoogle Scholar
  15. Knibb W (2000) Genetic improvement of marine fish—Which method for the industry? Aquacult Int 31:11–23Google Scholar
  16. Knibb W, Gorshkova G, Gorshkov S (1997) Selection for growth in the gilthead sea bream, Sparus aurata L. Isr J Aquacult Bamidgeh 49:57–66Google Scholar
  17. Kovac M, Groeneveld E, García-Cortés LA (2002) VCE-5: a package for the optimization of dispersion parameters. In: Proceedings of the 7th world congress of genetics applied to livestock production, Montpellier, France, 20–23 Aug 2002Google Scholar
  18. Launey S, Krieg F, Haffray P, Bruant JS, Vanniers A, Guyomard R (2003) Twelve new microsatellite markers for gilthead sea bream (Sparus aurata): characterization, polymorphism and linkage. Mol Ecol 3:457–459CrossRefGoogle Scholar
  19. Lee-Montero I, Navarro A, Negrín-Báez D, Zamorano MJ, Borrell Pichs YJ, Berbel C, Sánchez JA, García-Celdran M, Manchado M, Estévez A, Armero E, Afonso JM (2015) Genetic parameters and genotype–environment interactions for skeleton deformities and growth traits at different ages on gilthead sea bream (Sparus aurata L.) in four Spanish regions. Anim Genet 46(2):164–174CrossRefPubMedGoogle Scholar
  20. Legarra A, Varona L, de Maturana EL, (2008) Program TM.
  21. Martínez P, Fernández J (2008) Estimating parentage relationships using molecular markers in aquaculture. In: Schwartz SH (ed) Aquaculture research trends. Nova Science Publishers, New York, pp 59–112Google Scholar
  22. Meuwissen THE (1997) Maximizing the response of selection with predefined rate of inbreeding. J Anim Sci 75:934–940CrossRefPubMedGoogle Scholar
  23. Misztal I, Tsuruta S, Strabel T, Auvray B, Druet T, Lee DH (2002) BLUPF90 Andre lated programs (BGF90). In: Proceedings of the 7th world congress on genetics applied to livestock production, Montpellier, France, 20–23 Aug 2002Google Scholar
  24. Navarro A, Badilla R, Zamorano MJ, Pasamontes V, Hildebrandt S, Sánchez JJ, Afonso JM (2008) Development of two new microsatellite multiplex PCRs for three sparid species: gilthead sea bream (Sparus aurata L.), red porgy (Pagrus pagrus L.) and redbanded sea bream (P. auriga, Valenciennes, 1843) and their application to paternity studies. Aquaculture 285:30–37CrossRefGoogle Scholar
  25. Navarro A, Zamorano MJ, Hildebrandt S, Ginés R, Aguilera C, Afonso JM (2009) Estimates of heritabilities and genetic correlations for growth and carcass traits in gilthead sea bream (Sparus aurata L.), under industrial conditions. Aquaculture 289:225–230CrossRefGoogle Scholar
  26. Neira R, Días NF, Gall GAE, Gallardo JA, Lhorente AC, Manterola R (2006) Genetic improvement in coho salmon (Oncorhynchus kisutch). I: selection response and inbreeding depression on harvest weight. Aquaculture 257:9–17CrossRefGoogle Scholar
  27. Nejati-Javaremi A, Smith C, Gibson JP (1997) Effect of total allelic relationship on accuracy of evaluation and response to selection. J Anim Sci 75:1738–1745CrossRefPubMedGoogle Scholar
  28. O’Flynn FM, Bailey JK, Friars GW (1999) Responses to two generations of index selection in Atlantic salmon (Salmo salar). Aquaculture 173:143–147CrossRefGoogle Scholar
  29. Porta J, Porta JM, Bejar J, Alvarez MD (2010) Development of a microsatellite multiplex genotyping tool for the fish Gilthead sea bream (Sparus aurata): applicability in population genetics and pedigree analysis. Aquacult Res 41:1514–1522Google Scholar
  30. Rossi AR, Perrone E, Sola L (2006) Genetic structure of gilthead sea bream Sparus aurata, in the Central Mediterranean Sea. Cent Eur J Biol 1:636–647Google Scholar
  31. Sarropoulou E, Franch R, Louro B, Power DM, Bargelloni L, Magoulas A, Senger F, Tsalavouta M, Patarnello T, Galibert F, Kotoulas G, Geisler R (2007) A gene-based radiation hybrid map of the gilthead sea bream Sparus aurata refines and exploits conserved synteny with Tetraodon nigroviridis. BMC Genom 8:44CrossRefGoogle Scholar
  32. Stockley BM, Rogers AD, Iyengar A, Menezes G, Santos R, Long A (2000) Ten microsatellite loci isolated and developed for the black spot sea bream, Pagellus bogaraveo (Brunnich, 1768). Mol Ecol 9:999–1000CrossRefPubMedGoogle Scholar
  33. Taggart JB (2007) FAP: an exclusion-based parental assignment program with enhanced predictive functions. Mol Ecol 7:412–415CrossRefGoogle Scholar
  34. Vandeputte M (2012) An accurate formula to calculate exclusion power of marker sets in parentage assignment. Genet Sel Evolut 44:36. doi: 10.1186/1297-9686-44-36 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Tiago Fernandes
    • 1
    • 2
    Email author
  • Marine Herlin
    • 3
  • María Dolores López Belluga
    • 4
  • Guillermo Ballón
    • 3
  • Paulino Martinez
    • 5
  • Miguel A. Toro
    • 2
  • Jesús Fernández
    • 6
  1. 1.Laboratório de Genética e Biotecnologia Aplicada a Aquicultura, Departamento de Engenharia de PescaUniversidade Federal do CearáFortalezaBrazil
  2. 2.Departamento de Producción Animal, ETS Ingenieros AgrónomosUniversidad Politécnica de MadridMadridSpain
  3. 3.ABSA-CulmarexEs CollD’enRabassaSpain
  4. 4.Grupo CulmarexAguilasSpain
  5. 5.Departamento de Xenética, Facultade de VeterinariaUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
  6. 6.Departamento de Mejora Genética AnimalInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)MadridSpain

Personalised recommendations