Advertisement

Aquaculture International

, Volume 23, Issue 4, pp 997–1012 | Cite as

Growth performance of Noble Crayfish Astacus astacus in recirculating aquaculture systems

  • Uli B. Seemann
  • Kai Lorkowski
  • Matthew J. Slater
  • Friedrich Buchholz
  • Bela H. Buck
Article

Abstract

There is growing interest in using recirculating aquaculture systems (RAS) to raise noble crayfish Astacus astacus a valuable and once plentiful food species in Europe, now a highly endangered species. The growth and survival of A. astacus was compared in growth trials in RAS and open-pond systems (OPS) over a period of 2 months. Energy and lipid content of available diets and crayfish tissue were also determined. Growth of A. astacus during summer was significantly (p < 0.01, one sample t test) higher in OPS (SGR 1.23) than in RAS even at the highest feeding ration provided at 5 % bw/d−1 (RAS HI SGR 0.78 ± 0.06). OPS crayfish also had significantly (p < 0.01 OPS vs. all RAS treatments; Pairwise Wilcoxon) higher lipid content (8.51 %) than RAS crayfish (RAS HI 5.73 %, RAS MED 6.93 %, RAS LOW 5.92 %). Survival rates in RAS were, however, 100 % compared with previous observations in OPS of approx. 70 %. While results showed OPS growth exceeds than that in RAS in the short term, RAS survival rates and annualized growth performance may outweigh this disadvantage, particularly if optimal artificial diets for RAS holding are provided. Feed and crayfish analysis indicated that culturing A. astacus in RAS require a diet protein content exceeding 30 % and lipid content of <13 %, indicating that the carp diet supplied was not optimal. RAS culture allows this valuable species to be cultured in controlled, disease-free enclosed systems—resulting in high-value food products as well as high-quality seedlings for restocking purpose.

Keywords

Astacus astacus Crayfish feed Feed ratio Lipid content Pond system 

Abbreviations

AFK

Surface of filter body [m2/m3] 600 m2/m3 (Spieck et al. 2007)

AN

Amount of affiliated nitrogen (80 %; van Wyk 1999)

ENH3

Ammonia nitrogen amount of excretion (75 %, van Wyk 1999)

FImax

Max. feed intake per day [g]

NC

Amount of nitrogen in the protein (16 %; van Wyk 1999)

NR

Nitrification rate of filter body [gN/m2 d]

OPS

Open-pond systems

PC

Amount of protein in the feed (25 %, CYPRININ K2)

RAS

Recirculating aquaculture systems

RAS HI

Treatment of 5 %

RAS LOW

Treatment of 3 %

RAS MED

Treatment of 4 %

TAN

Total amount of imported nitrogen [gN/d]

VBF

Volume of biofilter [m3]

Notes

Acknowledgments

We would like to thank the reviewers for their time and thorough reviews which we believe have significantly improved the manuscript. The study was supported by Grants from the Deutsche Bundesstiftung Umwelt Germany (AZ 28879).

References

  1. Ackefors HEG (2000) Freshwater crayfish farming technology in the 1990s: a European and global perspective. Fish Fish 1:337–359CrossRefGoogle Scholar
  2. Ackefors H, Castell JD, Boston LD, Räty P, Svensson M (1992) Standard experimental diets for crustacean nutrition research. II. Growth and survival of juvenile crayfish Astacus astacus (Linné) fed diets containing various amounts of protein, carbohydrate and lipid. Aquaculture 104:341–356CrossRefGoogle Scholar
  3. Arzbach H-H (2010) Biologie. Ökologie und Verhalten der Flusskrebse, Krebsseminar Echem, EchemGoogle Scholar
  4. Auvergne A (1979) Culture of crayfish. In: L’élevage des écrevisses. Maisons-Alfort, La Zoothèque du Point Vétérinaire, p 87Google Scholar
  5. Avery JL, Romaire RP, McClain, WR (1998) Crawfish production production economics, pond construction and water supply. South Reg Aquac Cent 240:1–4Google Scholar
  6. Barki A, Karplus I, Manor R, Parnes S, Aflalo ED, Sagi A (2006) Growth of redclaw crayfish (Cherax quadricarinatus) in a three-dimensional compartments system: does a neighbor matter? Aquaculture 252:348–355CrossRefGoogle Scholar
  7. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917PubMedCrossRefGoogle Scholar
  8. Carmona-Osalde C, Olvera-Novoa MA, Rodriguez-Serna M (2005) Effect of the protein-lipids ratio on growth and maturation of the crayfish Procambarus (Austrocambarus) llamasi. Aquaculture 250:692–699CrossRefGoogle Scholar
  9. Cequier-Sanchez E, Rodriguez C, Ravelo AG, Zarate R (2008) Dichloromethane as a solvent for lipid extraction and assessment of lipid classes and fatty acids from samples of different natures. J Agric Food Chem 56:4297–4303PubMedCrossRefGoogle Scholar
  10. Christie WW (ed) (1993) Preparation of lipid extracts from tissues. In: Advances in lipid methodology. Oily Press, Dundee, pp 195–213Google Scholar
  11. Cukerzis JM (1988) Astacus astacus in Europe. In: Holdich DM, Lowery RS (eds) Freshwater crayfish: biology, management and exploitation. Croom Helm, London, pp 309–340Google Scholar
  12. Daws AG, Grills J, Konzen K, Moore PA (2002) Previous experiences alter the outcome of aggressive interactions between males in the crayfish, Procambarus Clarkii. Mar Freshw Behav Physiol 35:139–148CrossRefGoogle Scholar
  13. Dethlefs A (2007) Predator–Pray–Interaction between Dragonfly Larva (Odonata: Anisoptera) and Crayfish Juveniles (Astacus astacus). In: Zoological Institute–Department Limnology. Christian–Albrechts, University Kiel, Kiel, Germany, p 124Google Scholar
  14. Edgerton BF, Evans LH, Stephens FJ, Overstreet RM (2002) Synopsis of freshwater crayfish diseases and commensal organisms. Aquaculture 206:57–135CrossRefGoogle Scholar
  15. Edsman L, Füreder L, Gherardi F, Souty-Grosset C (2010) Astacus astacus—Status report. In: The IUCN Red List of Threatened Species. International Union for Conservation of Nature and Natural ResourcesGoogle Scholar
  16. EIFAC (1998) Report of the Symposium on Water for Sustainable Inland Fisheries and Aquaculture held in connection with the European Inland Fisheries Advisory Commission. In: Food and Agriculture Organization of the United Nations. FAO, Rome, p 56Google Scholar
  17. Franke R, Wessels S, Horstgen-Schwark G (2011) Enhancement of survival and growth in crowded groups: the road towards an intensive production of the noble crayfish Astacus astacus L. in indoor recirculation systems. Aquac Res 44:451–461CrossRefGoogle Scholar
  18. Füreder L (2009) Flusskrebse Biologie—Ökologie—Gefährdung. Naturmuseum Südtirol, WienGoogle Scholar
  19. Gherardi F (2011) Towards a sustainable human use of freshwater crayfish (Crustacea, Decapoda, Astacidea). Knowl Manag Aquat Ecosyst 401:1–2. doi: 10.1051/kmae/2011038
  20. Ghiasvand Z, Matinfar A, Valipour A, Soltani M, Kamali A (2012) Evaluation of different dietary protein and energy levels on growth performance and body composition of narrow clawed crayfish (Astacus leptodactylus). Iran J Fish Sci 11:63–77Google Scholar
  21. Hager J (2003) Edelkrebse–Biologie, Zucht, Bewirtschaftung. Leopold Stocker Verlag, GrazGoogle Scholar
  22. Holdich DM (2002) Distribution of crayfish in Europe and some adjoining countries. Bull Fr Pêche Piscic 367:611–650CrossRefGoogle Scholar
  23. Holdich DM, Reynolds JD, Souty-Grosset C, Sibley PJ (2009) A review of the ever increasing threat to European crayfish from non-indigenous crayfish species. Knowl Manag Aquat Ecosyst 394–395:11CrossRefGoogle Scholar
  24. Huner JV (1994) Freshwater Crayfish Aquaculture in North America, Europe, and Australia: Families Astacidae, Cambaridae, and Parastacidae. CRC Press, Boca RatonGoogle Scholar
  25. Ingle R (1997) Crayfishes, lobsters and crabs of Europe: an illustrated guide to common and traded species. Springer, BerlinCrossRefGoogle Scholar
  26. Jeske H (2010) Edelkebs Astacus astacus–Zucht. Vermehrung und Bewirtschaftung von Edelkrebsen, Krebsseminar, EchemGoogle Scholar
  27. Jover M, Fernandez-Carmona J, Del Rio M, Soler M (1999) Effect of feeding cooked-extruded diets, containing different levels of protein, lipid and carbohydrate on growth of red swamp crayfish (Procambarus clarkii). Aquaculture 178:127–137CrossRefGoogle Scholar
  28. Knudsen H, Tveite S (1999) Survival and growth of juvenile lobster Homarus gammarus L. raised for stock enhancement within in situ cages. Aquac Res 30:421–425CrossRefGoogle Scholar
  29. Kozák P, Buřič M, Policar T, Hamáčková J, Lepičová A (2007) The effect of inter- and intra-specific competition on survival and growth rate of native juvenile noble crayfish Astacus astacus and alien spiny-cheek crayfish Orconectes limosus. Hydrobiologia 590:85–94CrossRefGoogle Scholar
  30. Lawson T (1995) Recirculating aquaculture systems. Fundamentals of aquacultural engineering. Springer, US, pp 192–247CrossRefGoogle Scholar
  31. Li Y, Naghdi FG, Garg S, Adarme-Vega TC, Thurecht KJ, Ghafor WA, Tannock S, Schenk PM (2014) A comparative study: the impact of different lipid extraction methods on current microalgal lipid research. Microb Cell Fact 13:14PubMedCentralPubMedCrossRefGoogle Scholar
  32. Manor R, Segev R, Leibovitz MP, Aflalo ED, Sagi A (2002) Intensification of redclaw crayfish Cherax quadricarinatus culture: II. Growout in a separate cell system. Aquacult Eng 26:263–276CrossRefGoogle Scholar
  33. Masser MP, Rouse DB (1997) Australian red claw crayfish. South Reg Aquac Cent 244:1–8Google Scholar
  34. McClain WR (2012) Crawfish production: pond construction and water requirements. South Reg Aquac Cent 240:6Google Scholar
  35. O´Sullivan DD, Jones C, Fielder D (2012) Freshwater crustaceans. In: Lucas JSS, Paul C (eds) Aquaculture: farming aquatic animals and plants. Wiley, NY, p 948Google Scholar
  36. Perez Benavente G, Uglem I, Browne R, Marino Balsa C (2010) Culture of juvenile European lobster (Homarus gammarus L.) in submerged cages. Aquacult Int 18:1177–1189CrossRefGoogle Scholar
  37. Sander M (1998) Aquarientechnik im Süß- und Seewasser. Ulmer, StuttgartGoogle Scholar
  38. Skurdal J, Taugbøl T (2001) Crayfish of commercial importance. In: Holdich DM (ed) Biology of freshwater Crayfish. Blackwell Science, Oxford, pp 467–510Google Scholar
  39. Spieck E, Josza P-G, Alawi M, Brill F, Quantz G, Beth S, Wolbeck R, Watermann B (2007) Entwicklung neuartiger Trägermaterialien für die Wasseraufbereitung und Kreislaufführung in Marikultur-Produktionsanlagen der Fischzucht. DBU, OsnabrückGoogle Scholar
  40. Taugbøl T, Skurdal J (1988) Increased proportion of mature females of the noble crayfish (Astacus astacus L.) in culture conditions. Aquaculture 69:39–42CrossRefGoogle Scholar
  41. Usio N, Konishi M, Nakano S (2001) Species displacement between an introduced and a ‘vulnerable’ Crayfish: the role of aggressive interactions and shelter competition. Biol Invasions 3:179–185CrossRefGoogle Scholar
  42. Valipour A, Ozorio ROA, Shariatmadari F, Abedian A, Seyfabadi J, Zahmatkesh A (2012) Effects of dietary lipid levels on growth, survival, and molting of yearling narrow clawed crayfish, Astacus leptodactylus. J Appl Aquac 24:316–325CrossRefGoogle Scholar
  43. van Wyk P (1999) Principles of Recirculating System Design. In: Van Wyk P, Davis-Hodgkins M, Laramore R, Main KL, Mountain J, Scarpa J (eds) Farming marine shrimp in recirculating freshwater systems. Department of Agriculture and Consumer Services, Florida, p 90Google Scholar
  44. Westman K (2002) Alien Crayfish in Europe: negative and positive impacts and interactions with native Crayfish. In: Leppäkoski E, Gollasch S, Olenin S (eds) Invasive aquatic species of Europe distribution, impacts and management. Springer, Netherlands, pp 76–95CrossRefGoogle Scholar
  45. Westman K, Savolainen R (2001) Long term study of competition between two co-occurring Crayfish species, the native Astacus astacus L. and the introduced Pacifastacus leniusculus Dana, in a Finnish lake. Bull Fr Pêche Piscic 361:613–627CrossRefGoogle Scholar
  46. Wickins JFL and Lee DO’C (2002) Crustacean farming: ranching and culture. Wiley-Blackwell, NYCrossRefGoogle Scholar
  47. Wittmaak KE (2006) Ernährungsökologische Untersuchungen an Krebsen. Christian Albrechts Universität zu Kiel, KielGoogle Scholar
  48. Xu WN, Liu WB, Shen MF, Li GF, Wang Y, Zhang WW (2013) Effect of different dietary protein and lipid levels on growth performance, body composition of juvenile red swamp crayfish (Procambarus clarkii). Aquacult Int 21:687–697CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Uli B. Seemann
    • 1
    • 3
  • Kai Lorkowski
    • 2
    • 3
  • Matthew J. Slater
    • 1
    • 3
  • Friedrich Buchholz
    • 3
  • Bela H. Buck
    • 2
    • 3
  1. 1.Institute for Marine Resources GmbHBremerhavenGermany
  2. 2.University of Applied Sciences BremerhavenBremerhavenGermany
  3. 3.Alfred Wegener Institute Helmholtz Center for Polar and Marine ResearchBremerhavenGermany

Personalised recommendations