Aquaculture International

, Volume 23, Issue 1, pp 185–194 | Cite as

The effect of two different feeds on growth, carapace colour, maturation and mortality in marbled crayfish (Procambarus fallax f. virginalis)

  • Katrin Kaldre
  • Kerli Haugjärv
  • Mari Liiva
  • Riho Gross
Article

Abstract

The effect of two different feeds (30 % protein common carp feed without astaxanthin and astaxanthin-rich discus feed with 20 % shrimps and 46 % protein) on growth, carapace colour, maturation and mortality in marbled crayfish (Procambarus fallax f. virginalis) was examined under laboratory conditions. Feeding trials were carried out during 123 days at room temperature in triplicate per treatment (45 crayfish per treatment, 15 crayfish per aquarium). At the end of the trial, crayfish fed with discus feed exhibited uniformly the same dark blue carapace colouration, while crayfish fed with carp feed exhibited significantly lighter and more variable colouration in shades of grey. Growth was significantly faster (P < 0.001) among crayfish fed with higher protein content discus feed than among crayfish fed with lower protein content carp feed. Neither the effect of aquaria on growth nor the effect of feed on maturation and mortality were found to be significant (P > 0.05). Thus, our study showed that the type of feed had a significant impact on the growth and carapace colouration, but not on the maturation and mortality in the marbled crayfish.

Keywords

Marbled crayfish Procambarus fallax f. virginalis Feed Astaxanthin Carapace colour Growth rate 

Notes

Acknowledgments

The study was supported by the Estonian Ministry of Education and Research (institutional research funding project IUT8-2).

References

  1. Aiken DE, Waddy SL (1987) Molting and growth in crayfish: a review. Can Tech Rep Fish Aquat Sci 1587(3):34Google Scholar
  2. Beingesser K, Copp NH (1985) Differential diurnal distribution of juvenile and adult crayfish (Procambarus clarkii) and possible adaptive values of color differences between them. Crustaceana 49:164–172CrossRefGoogle Scholar
  3. Black JB (1975) Inheritance of the blue color mutation in the crawfish Procambarus acutus acutus (Girard). Proc La Acad Sci 38:25–27Google Scholar
  4. Black JB, Huner JV (1980) Genetics of the red swamp crawfish, Procambarus clarkii (Girard): state of the art. Proc Annu Meet World Maric Soc 11:535–543CrossRefGoogle Scholar
  5. Boonyaratpalin M, Thongrod S, Supamattaya K, Britton G, Schilipalius LE (2001) Effects of β-carotene source, Dunaliella salina, and astaxanthin on pigmentation, growth, survival and health of Penaeus mondon. Aquac Res Oxf 32:182–190CrossRefGoogle Scholar
  6. Britton G, Armitt GM, Lau SYM, Patel AK and Shone CC (1981) Carotenoproteins. In: Carotenoid chemistry & biochemistry. Pergamon Press Oxf 237–251Google Scholar
  7. Chucholl C, Morawetz K, Groß H (2012) The clones are coming–strong increase in Marmorkrebs [Procambarus fallax (Hagen, 1870) f. virginalis] records from Europe. Aquat Invasions 7(4):511–519CrossRefGoogle Scholar
  8. Crozier GF (1967) Carotenoids of seven species of sebastodes. Comp Biochem Physiol 23(1):179–184CrossRefGoogle Scholar
  9. D’Abramo L, Sheen SDJ (1996) Requerimientos nutricionales, formulación de dietas, y prácticas alimenticias para el cultivo intensivo del langostino de agua dulce Macrobrachium rosenbergii. In: Mendoza R, Cruz E, Ricque M (eds) Memorias del Segundo simposium internacional de nutrición acuícola. Monterrey NL, México, pp 81–101Google Scholar
  10. Faulkes Z (2010) The spread of the parthenogenetic marbled crayfish, marmorkrebs (Procambarus sp.), in the North American pet trade. Aquat Invas 5:447–450CrossRefGoogle Scholar
  11. Ghidalia W (1985) Structural and biological aspects of pigments. In: Bliss DE, Mantel LH (eds) The biology of Crustacea: integument, pigments and hormonal processes, vol 9. Academic Press, New York, pp 301–394CrossRefGoogle Scholar
  12. Harpaz S, Rise M, Arad S, Gur N (1998) The effect of three carotenoid sources on growth and pigmentation of juvenile freshwater crayfish Cherax quadricarinatus. Aquac Nutr 4:201–208CrossRefGoogle Scholar
  13. Harrison KE (1990) The role of nutrition in maturation, reproduction and embryonic development of decapod crustacean: a review. J Shellfish Res 9:1–28Google Scholar
  14. Izquierdo MS, Fernandez-Palacios H, Tacon AGJ (2001) Effect of broodstock nutrition on reproductive performance of fish. Aquaculture 197:25–42CrossRefGoogle Scholar
  15. Jones CM, Ruscoe IM (1996) Production technology for redclaw crayfish (Cherax quadricarinatus) freshwater fisheries and aquaculture centre. Freshw Fish Aquacult Centre, WalkaminGoogle Scholar
  16. Jones PL, De Silva SS, Mitchell DB (1996) The effect of dietary protein source on growth and carcass composition in juvenile Australian freshwater crayfish. Aquacult Int 4:361–367CrossRefGoogle Scholar
  17. Jones CM, McPhee CP, Ruscoe IM (2000) A review of genetic improvement in growth rate in redclaw crayfish Cherax quadricarinatus (von Martens) (Decapoda: Parastacidae). Aquacult Res 31:61–67CrossRefGoogle Scholar
  18. Lee WL (1977) Carotenoproteins in animal coloration. Dowden, Hutchinson & Ross, StroudsburgGoogle Scholar
  19. Liňán-Cabello MA, Jesús PM (2004) Induction factors derived from carotenoids and vitamiin A during the ovarian maturation of Litopenaeus vannamei. Aquacult Int 12:583–592CrossRefGoogle Scholar
  20. Liňán-Cabello MA, Paniagua-Michel JJ, Zenteno-Savin T (2003) Carotenoids and reginal levels in captive and wild shrimp, Litopenaeus vannamei. Aquacult Nutr 9:383–389CrossRefGoogle Scholar
  21. Liňán-Cabello MA, Medina-Zendejas R, Sánchez-Barajas M, Herrera AM (2004) Effects of carotenoids and retinol inoocyte maturation of crayfish Cherax quadrucarinatus. Aquacult Res 35:905–911CrossRefGoogle Scholar
  22. Lorenz BT (1998) A review of the carotenoid, astaxanthin, as a pigment and Vitamin source for cultured Penaeus Prawn. Naturose Tech Bull 1(05):1–7Google Scholar
  23. Lukhaup C (2003) Süβwasserkrebse aus aller Welt. Dähne, EttlingenGoogle Scholar
  24. Martin P, Kohlmann K, Scholtz G (2007) The parthenogenetic marmorkrebs (marbled crayfish) produces genetically uniform offspring. Naturwissenschaften 94:843–846PubMedCrossRefGoogle Scholar
  25. Menasveta P, Worawattanamateekul W, Latscha T, Clark JS (1993) Correction of black tiger prawn (Penaeus monodon Fabricius) coloration by astaxanthin. Aquacult Eng 12(4):203–213CrossRefGoogle Scholar
  26. Mengqing L, Wenjuan J, Qing C, Halin W (2004) The effect of vitamin A supplementation in broodstock feed on reproductive performance and larval quality in Penaeus chinensis. Aquac Nutr 10:295–300CrossRefGoogle Scholar
  27. Muriana FJG, Ruiz-Gaterrez V, Gallardo ML, Minguez-Mosquera MI (1993) A study of the lipids and carotenoprotein in the prawn Penaeus japonicus. J Biochem 114:223–229PubMedGoogle Scholar
  28. Nègre-Sadargues G, Castillo R, Segonzac M (2000) Carotenoid pigments and trophic behaviour of deep-sea shrimps (Crustacea, Decapoda, Alvinocarididae) from a hydrothermal area of the mid-Atlantic ridge. Comp Biochem Physiol 127:293–300CrossRefGoogle Scholar
  29. Noverian H, Vayghan AH, Valipour AR (2011) Effect of different levels of astaxanthin on shell Color and growth indices of freshwater crayfish (Astacus leptodactylus Eschcholtz, 1823). World J Fish Mar Sci 3(4):269–274Google Scholar
  30. Nur-E-Bordan SA, Okada S, Watabe S, Yamaguchi K (1995) Carotenoproteins from the exoskeleton of commercial black tiger prawn. Fish Sci 60:213–215Google Scholar
  31. Parisenti J, Beirão LH, Mouriňo JL, Vieira FN, Buglione CC, Maraschim M (2011) Effect of background color on shrimp pigmentation. Bol Inst Pesca 37(2):177–182Google Scholar
  32. Petit H, Nègre-Sadargues G, Castillo R, Trilles JP (1997) The Effects of dietary astaxanthin on growth and moulting cycle of postlarval stages of the prawn, Penaeus japonicus (Crustacea, Decapoda). Comp Biochem Physiol 117A(4):539–544CrossRefGoogle Scholar
  33. Ponce-Palafox JT, Arredondo-Figueroa JL, Vernon-Carter EJ (2006) Carotenoids from plants used in diets for the culture of the pacific white shrimp (Litopenaeus vannamei). Rev Mexic de Ing Quím 5:157–165Google Scholar
  34. Reynolds JD (2002) Growth and reproduction. In: Holdich DM (ed) Biology of freshwater crayfish. Oxford, Blackwell, pp 152–191Google Scholar
  35. Rodriguez DB, Simpson KL, Chichester CO (1973) The biosynthesis of astaxanthin. XVIII intermediates in the conversion of b-carotene. Int J Biochem 4:213–222CrossRefGoogle Scholar
  36. Scott RW (1999) Marketing bioactive ingredients in food products. Food Technol 53:53–69Google Scholar
  37. Seitz R (2001) Lebensdaten und Reproduktionsbiologie des Mar- morkrebses (Crustacea, Decapoda). Diplomarbeit, Universität UlmGoogle Scholar
  38. Shahidi F, Synowiecki J, Penney RW (1994) Chemical nature of xanthophylls in flesh and skin of cultured Arctic char (Salvelinus alpinus L.). Food Chem 51(1):1–4CrossRefGoogle Scholar
  39. Sommer TR, Morrissy NM, Potts WT (1991) Growth and pigmentation of marron (Cherax tenuimanus) fed a reference ration supplemented with the microalgae Dunaliella salina. Aquaculture 99:285–295CrossRefGoogle Scholar
  40. Stepnowski P, Ólafsson G, Helgason H, Jastor B (2004) Recovery of astaxanthin from seafood wastewater utilizing fish scales waste. Chemosphere 54:413–417PubMedCrossRefGoogle Scholar
  41. Tanaka Y (1978) Comparative biochemical studies on carotenoids in aquatic animals. Dissertation for doctor of agriculture (Kyushu University). Mem Fac Fish Kagoshima Univ 27(2):355–422Google Scholar
  42. Thacker R, Hazlett B, Esman L, Stafford C, Keller T (1993) Color morphs of the crayfish Orconectes virilis. Am Midl Nat 129:182–199CrossRefGoogle Scholar
  43. Velu CS, Czeczuga B, Munuswamy N (2003) Carotenoprotein complexes in entomostracan crustaceans (Streptocephalus dichotomus and Moina micrura). comparative biochemistry and physiology. Part B Biochem Mol Biol 135:35–42CrossRefGoogle Scholar
  44. Vogt G (2008) The marbled crayfish: a new model organism for research on development, epigenetics and evolutionary biology. J Zool 276:1–13CrossRefGoogle Scholar
  45. Vogt G (2010) Suitability of the clonal marbled crayfish for biogerontological research: a review and perspective, with remarks on some further crustaceans. Biogerontol 11:643–669CrossRefGoogle Scholar
  46. Vogt G, Tolley L, Scholtz G (2004) Life stages and reproductive components of the marmorkrebs (marbled crayfish), the first parthenogenetic decapod crustacean. J Morphol 261:286–311PubMedCrossRefGoogle Scholar
  47. Vogt G, Huber M, Thiemann M, van den Boogaart G, Schmitz OJ, Schubart CD (2007) Production of different phenotypes from the same genotype in the same environment by developmental variation. J Exp Biol 211:510–523CrossRefGoogle Scholar
  48. Vogt G, Huber M, Thiemann M, van den Boogaart G, Schmitz OJ, Schubart CD (2008) Production of different phenotypes from the same genotype in the same environment by developmental variation. J Exp Biol 211:510–523PubMedCrossRefGoogle Scholar
  49. Volpe EP, Penn GH (1957) Dimorphism of chromatophore patterns in the dwarf crayfish. J Hered 48:90–96Google Scholar
  50. Wade NM (2010) Genetics, environment define crustacean color. Glob aquac advocate 13(1):24–26Google Scholar
  51. Wade NM, Goulter KC, Wilson KJ, Hall MR, Degnan BM (2005) Esterified astaxanthin levels in lobster epithelia correlate with shell colour intensity: potential role in crustacean shell colour formation. Comp Biochem Physiol 141B:307–313CrossRefGoogle Scholar
  52. Walker ML, Austin CM, Meewan M (2000) Evidence for the inheritance of a blue variant of the Australian fresh-water crayfish Cherax destructor (Decapoda: Parastacidae) as an autosomal recessive. J Crustac Biol 20(1):25–30CrossRefGoogle Scholar
  53. You K, Yang H, Liu Y, Liu S, Zhou Y, Zhang T (2006) Effects of different light sources and illumination methods on growth and body color of shrimp Litopenaeus vannamei. Aquaculture 252:557–565CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Katrin Kaldre
    • 1
  • Kerli Haugjärv
    • 1
  • Mari Liiva
    • 1
  • Riho Gross
    • 1
  1. 1.Department of Aquaculture, Institute of Veterinary Medicine and Animal SciencesEstonian University of Life SciencesTartuEstonia

Personalised recommendations