Aquaculture International

, Volume 22, Issue 2, pp 901–912 | Cite as

Effects of carbohydrate supplementation on water quality, microbial dynamics and growth performance of giant tiger prawn (Penaeus monodon)

  • Sujeet Kumar
  • P. S. Shyne Anand
  • D. De
  • J. K. Sundaray
  • R. Ananda Raja
  • G. Biswas
  • A. G. Ponniah
  • T. K. Ghoshal
  • A. D. Deo
  • A. Panigrahi
  • M. Muralidhar
Article

Abstract

Biofloc technology based 45-day indoor growth trial was conducted to evaluate the effect of carbohydrate (CHO), molasses supplementation on two developmental stages viz, juvenile (J) and sub-adult (SA) of Penaeus monodon in zero-water exchange system. P. monodon juveniles (1.56 ± 0.04 g) and sub-adults (14.32 ± 0.22 g) were stocked in fibre-reinforced plastic tanks (1,000 L) with soil base. Carbohydrate supplementation significantly reduced (p < 0.05) the total ammonia nitrogen (TAN), nitrite-N (NO2-N) and nitrate-N (NO3-N) over the time periods in sub-adult group. However, no significant difference in TAN and NO2-N was observed in juvenile-based treatments. Supplementation of carbohydrate significantly increased (p < 0.05) the water and soil total heterotrophic bacterial (THB) count in both juvenile and sub-adults. Despite increase in total Vibrio count (TVC), lower TVC/THB % was noticed in the water column of J + CHO (0.82) and SA + CHO (0.73) compared to control groups, J − CHO (1.48) and SA − CHO (1.21). Supplementation of carbohydrate increased the final body weight in J + CHO (6.51 ± 0.44 g) and SA + CHO (22.52 ± 0.98 g) compared with respective controls, J − CHO (5.05 ± 0.45 g) and SA − CHO (20.00 ± 0.33 g). Similarly, significantly lower (p < 0.05) feed conversion ratio and better protein efficiency ratio were recorded in carbohydrate-supplemented juvenile and sub-adults treatment groups. The present study demonstrates that supplementation of carbohydrate reduced the nitrogenous metabolites and significantly enhanced the growth performance of juvenile and sub-adult of P. monodon.

Keywords

Biofloc technology Carbohydrate supplementation C:N ratio Ginat tiger prawn Microbial dynamics Penaeusmonodon 

References

  1. Anand PSS, Kumar S, Panigrahi A, Ghoshal TK, Dayal JS, Biswas G, Sundaray JK, De D, Raja RA, Deo AD, Pillai SM, Ravichandran P (2013a) Effects of C:N ratio and substrate integration on periphyton biomass, microbial dynamics and growth of Penaeus monodon juveniles. Aquacult Int 21:511–524CrossRefGoogle Scholar
  2. Anand PSS, Kohli MPS, Dam Roy S, Sundaray JK, Kumar S, Sinha A, Pailan GH, Sukham MK (2013b) Effect of dietary supplementation of periphyton on growth performance and digestive enzyme activities in Penaeus monodon. Aquaculture 392–395:59–68CrossRefGoogle Scholar
  3. AOAC (1995) Official methods of analysis. In: Helrich K (ed) 15th edn. Association of Official Analytical Chemists, Virginia, p 1094Google Scholar
  4. APHA (1998) Standard methods for the examination of water and wastewater. In: Clesceri LS, Greenberg AE, Eaton AD (eds) American Public Health Association, American Water Works Association and Water Environment Federation. United Book Press, Washington DCGoogle Scholar
  5. Arnold SJ, Coman FE, Jackson CJ, Groves SA (2009) High-intensity, zero water-exchange production of juvenile tiger shrimp, Penaeus monodon: an evaluation of artificial substrates and stocking density. Aquaculture 293:42–48CrossRefGoogle Scholar
  6. Avnimelech Y (2007) Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture 264:140–147CrossRefGoogle Scholar
  7. Avnimelech Y (2012) Biofloc technology–A practical guide book, 2nd edn. The World Aquaculture Society, Baton Rouge 272Google Scholar
  8. Azim ME, Little DC, Bron JE (2008) Microbial protein production in activated suspension tanks manipulating C:N ratio in feed and the implications for fish culture. Bioresource Technol 99:3590–3599CrossRefGoogle Scholar
  9. Burford MA, Thompson PJ, McIntosh RP, Bauman RH, Pearson DC (2003) Nutrient and microbial dynamics in high-intensity, zero water exchange shrimp ponds in Belize. Aquaculture 219:393–411CrossRefGoogle Scholar
  10. Burford MA, Sellars MJ, Arnold SJ, Keys SJ, Crocos PJ, Preston NP (2004) Contribution of the natural biota associated with substrates to the nutritional requirements of the post–larval shrimp, Penaeus esculentus (Haswell) in high density rearing systems. Aquac Res 35:508–515CrossRefGoogle Scholar
  11. Chen HY (1998) Nutritional requirements of the black tiger shrimp: Penaeus monodon. Rev Fish Sci 6(1–2):79–95CrossRefGoogle Scholar
  12. Crab R, Defoirdt T, Bossier P, Verstraete W (2012) Biofloc technology in aquaculture: beneficial effects and future challenges. Aquaculture 356:351–356CrossRefGoogle Scholar
  13. De Schryver P, Crab R, Defoirdt T, Boon N, Verstraete W (2008) The basics of bio–flocs technology: the added value for aquaculture. Aquaculture 277:125–137CrossRefGoogle Scholar
  14. Defoirdt T, Boon N, Sorgeloos P, Verstraete W, Bossier P (2007) Alternatives to antibiotics to control bacterial infections: luminescent vibriosis in aquaculture as an example. Trends Biotechnol 25:472–479PubMedCrossRefGoogle Scholar
  15. Emerenciano M, Ballester ELC, Cavalli RO, Wasielesky W (2011) Effect of biofloc technology (BFT) on the early postlarval stage of pink shrimp: growth performance, floc composition and salinity stress tolerance. Aquacult Int 19:891–901CrossRefGoogle Scholar
  16. Farias A, Uriarte I, Hernández J, Pino S, Pascual C, Caamal C, Domíngues P, Rosas C (2009) How size relates to oxygen consumption, ammonia excretion, and ingestion rates in cold (Enteroctopus megalocyathus) and tropical (Octopus maya) Octopus species. Mar Biol 156:1547–1558CrossRefGoogle Scholar
  17. Geets J, Boon N, Verstraete W (2006) Strategies of aerobic ammonia–oxidizing bacteria for coping with nutrient and oxygen fluctuations. FEMS Microbiol Ecol 58:1–13PubMedCrossRefGoogle Scholar
  18. Hargreaves JA (1998) Nitrogen biogeochemistry of aquaculture ponds. Aquaculture 166:181–212CrossRefGoogle Scholar
  19. Hargreaves JA (2006) Photosynthetic suspended–growth systems in aquaculture. Aquacult Eng 34:344–363CrossRefGoogle Scholar
  20. Hari B, Kurup BM, Varghese JT, Schrama JW, Verdegem MCJ (2004) Effects of carbohydrate addition on production in extensive shrimp culture systems. Aquaculture 241:179–194CrossRefGoogle Scholar
  21. Hari B, Kurup BM, Varghese JT, Schrama JW, Verdegem MCJ (2006) The effect of carbohydrate addition on water quality and the nitrogen budget in extensive shrimp culture systems. Aquaculture 252:248–263CrossRefGoogle Scholar
  22. Herbert RA (1999) Nitrogen cycling in coastal marine ecosystems. FEMS Microbiol Rev 23:563–590PubMedCrossRefGoogle Scholar
  23. Jantrarotai W, Sitasit P, Rajchapakdee S (1994) The optimum carbohydrate to lipid ratio in hybrid Clarias catfish (Clarias macrocephalus × C. gariepinus) diets containing raw broken rice. Aquaculture 127:61–68CrossRefGoogle Scholar
  24. Ju ZY, Forster IP, Conquest L, Dominy W, Kuo WC, David Horgen F (2008) Determination of microbial community structures of shrimp floc cultures by biomarkers and analysis of floc amino acid profiles. Aquac Res 39:118–133CrossRefGoogle Scholar
  25. Kautsky N, Rönnbäck P, Tedengren M, Troell M (2000) Ecosystem perspectives on management of disease in shrimp pond farming. Aquaculture 191:145–161CrossRefGoogle Scholar
  26. Kimura TK, Yamano HN, Monoyama K, Hiraoka M, Frousp K (1996) Detection of penaeid rod shaped DNA (PRVD) by PCR (in Japanese). Fish Pathol 31:93–98CrossRefGoogle Scholar
  27. Kuhn DD, Boardman GD, Lawrence AL, Marsh L, Flick GJ (2009) Microbial floc meal as a replacement ingredient for fish meal and soybean protein in shrimp feed. Aquaculture 296:51–57CrossRefGoogle Scholar
  28. Kureshy N, Davis DA (2002) Protein requirement for maintenance and maximum weight gain for the pacific white shrimp, Litopenaeus vannamei. Aquaculture 204:125–143CrossRefGoogle Scholar
  29. Lavilla–Pitogo CR, Leaño EM, Paner MG (1998) Mortalities of pond–cultured juvenile shrimp, Penaeus monodon, associated with dominance of luminescent Vibrios in the rearing environment. Aquaculture 164:337–349CrossRefGoogle Scholar
  30. Moss SM, Pruder GD (1995) Characterization of organic particles associated with rapid growth in juvenile white shrimp, Penaeus vannamei Boone, reared under intensive culture conditions. J Exp Mar Biol Ecol 187:175–191CrossRefGoogle Scholar
  31. Naylor RL, Goldvburg RJ, Primavera JH, Kautsky N, Beveridge MCM, Clay J, Folke C, Lubchenco J, Mooney H, Troell M (2000) Effect of aquaculture on world fish supplies. Nature 405:1017–1024PubMedCrossRefGoogle Scholar
  32. NRC (1993) Nutrient requirements of fish. National Academy Press, USA, p 114Google Scholar
  33. Paez–Osuna F (2001) The environmental impact of shrimp aquaculture: a global perspective. Environ Pollut 112:229–231PubMedCrossRefGoogle Scholar
  34. Ritvo G, Samocha TM, Lawrence AL, Neill WH (1998) Growth of Penaeus vannamei on soils from various texas shrimp farms, under laboratory conditions. Aquaculture 163:101–110CrossRefGoogle Scholar
  35. Samocha TM, Patnaik S, Speed M, Ali AM, Burger JM, Almeida RV, Ayub Z, Harisanto M, Horowitz A, Brock DL (2007) Use of molasses as carbon source in limited discharge nursery and grow–out systems for Litopenaeus vannamei. Aquacult Eng 36:184–191CrossRefGoogle Scholar
  36. Shiau SY (1998) Nutrient requirements of penaeid shrimps. Aquaculture 164:77–93CrossRefGoogle Scholar
  37. Tan B, Mai K, Zheng S, Zhou Q, Liu L, Yu Y (2005) Replacement of fish meal by meat and bone meal in practical diets for the white shrimp Litopenaeus vannamai (Boone). Aquac Res 36:439–444CrossRefGoogle Scholar
  38. Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38CrossRefGoogle Scholar
  39. Wasielesky W Jr, Atwood H, Stokes A, Browdy CL (2006) Effect of natural production in a zero exchange suspended microbial floc based super–intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture 258:396–403CrossRefGoogle Scholar
  40. Xu WJ, Pan LQ (2012) Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero–water exchange tanks manipulating C/N ratio in feed. Aquaculture 357:147–152Google Scholar
  41. Zhao P, Huang J, Wang XH, Song XL, Yang CH, Zhang XG, Wang GC (2012) The application of bioflocs technology in high–intensive, zero exchange farming systems of Marsupenaeus japonicus. Aquaculture 354:97–106CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Sujeet Kumar
    • 1
  • P. S. Shyne Anand
    • 1
  • D. De
    • 1
  • J. K. Sundaray
    • 1
  • R. Ananda Raja
    • 1
    • 2
  • G. Biswas
    • 1
    • 3
  • A. G. Ponniah
    • 2
  • T. K. Ghoshal
    • 1
  • A. D. Deo
    • 1
  • A. Panigrahi
    • 1
    • 2
  • M. Muralidhar
    • 2
  1. 1.Kakdwip Research CentreCentral Institute of Brackishwater Aquaculture (ICAR)KakdwipIndia
  2. 2.Central Institute of Brackishwater Aquaculture (ICAR)ChennaiIndia
  3. 3.Faculty of AgricultureUniversity of MiyazakiMiyazakiJapan

Personalised recommendations