Aquaculture International

, Volume 20, Issue 5, pp 879–910 | Cite as

Bacteriophage therapy as a bacterial control strategy in aquaculture

  • J. OliveiraEmail author
  • F. Castilho
  • A. Cunha
  • M. J. Pereira


Aquaculture is a sector of economic relevance worldwide. Bacterial infections have been recognized as an important limitation to aquaculture production and trade. Microbial infection in aquaculture derived products has been prevented by antibiotic administration with limited success. Recently, drug-resistant bacteria have become a global problem, urging for the prompt development of alternative control strategies in order to improve food quality and safety. The alternative approach of using lytic phages or their products, as bioagents for the treatment or prophylaxis of bacterial infectious diseases, has gained interest. This review intends to emphasize the need of further research in the field of the application of phage therapy in aquaculture and highlights the use of phages in invertebrates as an antimicrobial strategy pointing critical aspects from the economic, environmental and public health perspectives.


Bacteriophage Bacterial infections Aquaculture Food safety Public health 



We gratefully acknowledge to Professor Toshihiro Nakai from the Graduate School of Biosphere Science of the Hiroshima University, for providing us some references. This work was supported by Portuguese Foundation for Science and Technology in the form of the Ph. D. grant SFRH/BD/28747/2006.


  1. Ackermann HW, Dauguet C, Paterson WD et al (1985) Aeromonas bacteriophages: reexamination and classification. Ann Inst Pasteur Vir 136(2):175–199Google Scholar
  2. Alanis AJ (2005) Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res 36(6):697–705PubMedGoogle Scholar
  3. Albert M, Vannesson C, Schwartzbrod L (1995) Recovery of somatic coliphages in shellfish. Water Sci Technol 31(5–6):453–456Google Scholar
  4. Almeida A, Cunha A, Gomes NC et al (2009) Phage therapy and photodynamic therapy: low environmental impact approaches to inactivate microorganisms in fish farming plants. Mar Drugs 7(3):268–313PubMedGoogle Scholar
  5. Austin B, Zhang XH (2006) Vibrio harveyi: a significant pathogen of marine vertebrates and invertebrates. Lett Appl Microbiol 43(2):119–124PubMedGoogle Scholar
  6. Bai F, Han Y, Chen J et al (2008) Disruption of quorum sensing in Vibrio harveyi by the AiiA protein of Bacillus thuringiensis. Aquaculture 274(1):36–40Google Scholar
  7. Barrow PA, Soothill JS (1997) Bacteriophage therapy and prophylaxis: rediscovery and renewed assessment of potential. Trends Microbiol 5(7):268–271PubMedGoogle Scholar
  8. Beril C, Crance JM, Leguyader F et al (1996) Study of viral and bacterial indicators in cockles and mussels. Mar Pollut Bull 32(5):404–409Google Scholar
  9. Berthe FCJ (ed) (2005) Diseases in mollusc hatcheries and their paradox in health management. Fish Health Section, Asian Fisheries Society, ManilaGoogle Scholar
  10. Bricknell I, Dalmo RA (2005) The use of immunostimulants in fish larval aquaculture. Fish Shellfish Immun 19(5):457–472Google Scholar
  11. Brüsso H, Canchaya C, Hardt W-D (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68(3):560–602Google Scholar
  12. Cabello FC (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8(7):1137–1144PubMedGoogle Scholar
  13. Carlton RM (1999) Phage therapy: past history and future prospects. Arch Immunol Ther Exp 47:267–274Google Scholar
  14. Carrias A, Welch T, Waldbieser G et al (2011) Comparative genomic analysis of bacteriophages specific to the channel catfish pathogen Edwardsiella ictaluri. Virol J 8(1):6PubMedGoogle Scholar
  15. Chai T-J, Han T-J, Cockey RR (1994) Microbiological quality of shellfish-growing waters in Chesapeake Bay. J Food Protect 57(3):229–234Google Scholar
  16. Chrisolite B, Thiyagarajan S, Alavandi SV et al (2008) Distribution of luminescent Vibrio harveyi and their bacteriophages in a commercial shrimp hatchery in South India. Aquaculture 275(1–4):13–19Google Scholar
  17. Chung H, Jaykus LA, Lovelace G et al (1998) Bacteriophages and bacteria as indicators of enteric viruses in oysters and their harvest waters. Water Sci Technol 38(12):37–44Google Scholar
  18. Crothers-Stomps C, Høj L, Bourne DG et al (2010) Isolation of lytic bacteriophage against Vibrio harveyi. J Appl Microbiol 108(5):1744–1750PubMedGoogle Scholar
  19. Daniel P (2009) Available chemotherapy in Mediterranean fish farming: use and needs. CIHEAM (Centre International de Hautes Etudes Agronomiques Méditerranéennes)/FAO (food and agriculture organization of the United Nations), ZaragozaGoogle Scholar
  20. Defoirdt T, Boon N, Bossier P et al (2004) Disruption of bacterial quorum sensing: an unexplored strategy to fight infections in aquaculture. Aquaculture 240(1–4):69–88Google Scholar
  21. Defoirdt T, Boon N, Sorgeloos P et al (2007) Alternatives to antibiotics to control bacterial infections: luminescent vibriosis in aquaculture as an example. Trends Biotechnol 25(10):472–479PubMedGoogle Scholar
  22. Defoirdt T, Sorgeloos P, Bossier P (2011) Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr Opin Microbiol 14(3):251–258PubMedGoogle Scholar
  23. Doré WJ, Henshilwood K, Lees DN (2000) Evaluation of F-specific RNA bacteriophage as a candidate human enteric virus indicator for bivalve molluscan shellfish. Appl Environ Microbiol 66(4):1280–1285PubMedGoogle Scholar
  24. Doré WJ, Mackie M, Lees DN (2003) Levels of male-specific RNA bacteriophage and Escherichia coli in molluscan bivalve shellfish from commercial harvesting areas. Lett Appl Microbiol 36(2):92–96PubMedGoogle Scholar
  25. Efrony R, Loya Y, Bacharach E et al (2007) Phage therapy of coral disease. Coral Reefs 26(1):7–13Google Scholar
  26. Eldar A, Ghittino C, Asanta L et al (1996) Enterococcus seriolicida is a junior synonym of Lactococcus garvieae, a causative agent of septicemia and meningoencephalitis in fish. Curr Microbiol 32(2):85–88PubMedGoogle Scholar
  27. Entenza JM, Loeffler JM, Grandgirard D et al (2005) Therapeutic effects of bacteriophage Cpl-1 lysin against Streptococcus pneumoniae endocarditis in rats. Antimicrob Agents Chemother 49:4789–4792PubMedGoogle Scholar
  28. FAO (2006) The state of world aquaculture. Fisheries Technical Paper 500. FAO Fisheries Department, RomeGoogle Scholar
  29. FAO (2009) The state of world fisheries and aquaculture—2008. FAO Fisheries and Aquaculture Department, RomeGoogle Scholar
  30. Farzanfar A (2006) The use of probiotics in shrimp aquaculture. FEMS Immunol Med Mic 48(2):149–158Google Scholar
  31. Fauconneau B (2002) Health value and safety quality of aquaculture products. Rev Med Vet 153(5):331–336Google Scholar
  32. Flegel TW, Pasharawipas T, Owens L et al (2005) Evidence for phage-induced virulence in the shrimp pathogen Vibrio harveyi. In: Walker P, Lester R, Bondad-Reantaso MG (eds) Diseases in Asian Aquaculture V. Fish Health Section, Asian Fisheries Society, Manila, pp 329–337Google Scholar
  33. Gibson LF, Woodworth J, George AM (1998) Probiotic activity of Aeromonas media on the Pacific oyster, Crassostrea gigas, when challenged with Vibrio tubiashii. Aquaculture 169(1–2):111–120Google Scholar
  34. Giraud E, Douet D-G, Le Bris H et al (2006) Survey of antibiotic resistance in an integrated marine aquaculture system under oxolinic acid treatment. FEMS Microbiol Ecol 55(3):439–448PubMedGoogle Scholar
  35. Girón-Pérez MI (2010) Relationships between innate immunity in bivalve molluscs and environmental pollution. Invertebrate Surviv J 7(2):149–156Google Scholar
  36. Grabow W (2001) Bacteriophages: update on application as models for viruses in water. Water SA 27(2):251–268Google Scholar
  37. Grandgirard D, Loeffler JM, Fischetti VA et al (2008) Phage lytic enzyme cpl-1 for antibacterial therapy in experimental pneumococcal meningitis. J Infect Dis 197:1519–1522PubMedGoogle Scholar
  38. Griffiths AJF, Gelbart WM, Miller JH et al (1999) Modern genetic analysis. W. H. Freeman, New YorkGoogle Scholar
  39. Hektoen H, Berge JA, Hormazabal V et al (1995) Persistence of antibacterial agents in marine sediments. Aquaculture 133(3–4):175–184Google Scholar
  40. Helm MM, Bourne N (2004) Hatchery culture of bivalves—A practical manual. FAO of the United Nations, RomeGoogle Scholar
  41. Hermoso JA, García JL, García P (2007) Taking aim on bacterial pathogens: from phage therapy to enzybiotics. Curr Opin Microbiol 10(5):461–472PubMedGoogle Scholar
  42. Hernroth BE, Conden-Hansson A-C, Rehnstam-Holm A-S et al (2002) Environmental factors influencing human viral pathogens and their potential indicator organisms in the blue mussel, Mytilus edulis: the first Scandinavian report. Appl Environ Microbiol 68(9):4523–4533PubMedGoogle Scholar
  43. Hidaka T, Kawaguchi T (1986) Properties of some Aeromonas salmonicida virulent phages in Japan. Memoirs of Faculty of Fisheries—Kagoshima University 35:39–52Google Scholar
  44. Holmström K, Gräslund S, Wahlström A et al (2003) Antibiotic use in shrimp farming and implications for environmental impacts and human health. Int J Food Sci Technol 38(3):255–266Google Scholar
  45. Housby JN, Mann NH (2009) Phage therapy. Drug Discov Today 14(11–12):536–540PubMedGoogle Scholar
  46. Howgate P, Lima dos Santos C, Shehadeh Z (1997) Safety of food products from aquaculture—review of the state of world aquaculture. FAO fisheries circular, Rome, pp 67–74Google Scholar
  47. Hsu CH, Lo CY, Liu JK et al (2000) Control of the eel (Anguilla japonica) pathogens, Aeromonas hydrophila and Edwardsiella tarda, by bacteriophages. J Fisheries Soc Taiwan 27(1):21–31Google Scholar
  48. Imbeault S, Parent S, Lagacé M et al (2006) Using bacteriophages to prevent furunculosis caused by Aeromonas salmonicida in farmed Brook Trout. J Aquat Anim Health 18(3):203–214Google Scholar
  49. Inal JM (2003) Phage therapy: a reappraisal of bacteriophages as antibiotics. Arch Immunol Ther Exp 51(4):237–244Google Scholar
  50. Inglis V, Frerichs GN, Millar SD et al (1991) Antibiotic resistance of Aeromonas salmonicida isolated from Atlantic salmon, Salmo salar L., in Scotland. J Fish Dis 14(3):353–358Google Scholar
  51. Inglis V, Millar SD, Richards RH (1993a) Resistance of Aeromonas salmonicida to amoxicillin. J Fish Dis 16(4):389–395Google Scholar
  52. Inglis V, Yimer E, Bacon EJ et al (1993b) Plasmid-mediated antibiotic resistance in Aeromonas salmonicida isolated from Atlantic salmon, Salmo salar L., in Scotland. J Fish Dis 16(6):593–599Google Scholar
  53. Jado I, López R, García E et al (2003) Phage lytic enzymes as therapy for antibiotic-resistant Streptococcus pneumoniae infection in a murine sepsis model. J Antimicrob Chemother 52:967–973PubMedGoogle Scholar
  54. Jiang G, Su M (2009) Quorum-sensing of bacteria and its application. JOUC 8(4):385–391Google Scholar
  55. Jorquera MA, Valencia G, Eguchi M et al (2002) Disinfection of seawater for hatchery aquaculture systems using electrolytic water treatment. Aquaculture 207(3–4):213–224Google Scholar
  56. Karunasagar I, Pai R, Malathi GR et al (1994) Mass mortality of Penaeus monodon larvae due to antibiotic-resistant Vibrio harveyi infection. Aquaculture 128(3–4):203–209Google Scholar
  57. Karunasagar I, Karunasagar I, Umesha RK (2004) Microbial diseases in shrimp aquaculture. In: Ramaiah N (ed) Marine Microbiology: facets and opportunities. National Institute of Oceanography, Goa, pp 121–134Google Scholar
  58. Karunasagar I, Vinod MG, Kennedy B et al (2005) Biocontrol of bacterial pathogens in aquaculture with emphasis on phage therapy. In: Walker PJ, Lester RG, Bondad-Reantaso MG (eds) Diseases in Asian Aquaculture V. Fish Health Section, Asian Fisheries Society, Manila, pp 535–542Google Scholar
  59. Karunasagar I, Shivu MM, Girisha SK et al (2007) Biocontrol of pathogens in shrimp hatcheries using bacteriophages. Aquaculture 268(1–4):288–292Google Scholar
  60. Kay WW, Trust TJ (1991) Form and functions of the regular surface array (S-layer) of Aeromonas salmonicida. Experientia 47(5):412–414PubMedGoogle Scholar
  61. Kerry J, Hiney M, Coyne R et al (1994) Frequency and distribution of resistance to oxytetracycline in micro-organisms isolated from marine fish farm sediments following therapeutic use of oxytetracycline. Aquaculture 123(1–2):43–54Google Scholar
  62. Kim JH, Gomez DK, Nakai T et al (2010) Isolation and identification of bacteriophages infecting ayu Plecoglossus altivelis altivelis specific Flavobacterium psychrophilum. Vet Microbiol 140(1–2):109–115PubMedGoogle Scholar
  63. Kruse H, Sørum H (1994) Transfer of multiple drug resistance plasmids between bacteria of diverse origins in natural microenvironments. Appl Environ Microbiol 60(11):4015–4021PubMedGoogle Scholar
  64. Kutter E, Sulakvelidze A (2005) Bacteriophages: biology and applications—molecular biology and applications. CRC Press, New YorkGoogle Scholar
  65. Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Microbiol 8(5):317–327PubMedGoogle Scholar
  66. Lavilla-Pitogo CR, Baticados MCL, Cruz-Lacierda ER et al (1990) Occurrence of luminous bacterial disease of Penaeus monodon larvae in the Philippines. Aquaculture 91(1–2):1–13Google Scholar
  67. Le Pennec M, Prieur D (1977) Les antibiotiques dans les elevages de larves de bivalves marins. Aquaculture 12(1):15–30Google Scholar
  68. Lees D (2000) Viruses and bivalve shellfish. Int J Food Microbiol 59(1–2):81–116PubMedGoogle Scholar
  69. Legnani P, Leoni E, Lev D et al (1998) Distribution of indicador bacteria and bacteriophages in shellfish and shellfish growing waters. J Appl Microbiol 85:790–798PubMedGoogle Scholar
  70. Levin BR, Bull JJ (2004) Population and evolutionary dynamics of phage therapy. Nat Rev Microbiol 2(2):166–173PubMedGoogle Scholar
  71. Lila R, Yaowanit D, Sataporn D et al (1999) Lethal toxicity of Vibrio harveyi to cultivated Penaeus monodon induced by a bacteriophage. Dis Aquat Org 35(3):195–201Google Scholar
  72. Loeffler JM, Nelson D, Fischetti VA (2001) Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 294:2170–2172PubMedGoogle Scholar
  73. Loeffler JM, Djurkovic S, Fischetti VA (2003) Phage lytic enzyme Cpl-1 as a novel antimicrobial for pneumococcal bacteremia. Infect Immun 71:6199–6204PubMedGoogle Scholar
  74. Lorch A (1999) Bacteriophages: an alternative to antibiotics? Biotechnol Dev Monit 14–17Google Scholar
  75. Magaraggia M, Faccenda F, Gandolfi A et al (2006) Treatment of microbiologically polluted aquaculture waters by a novel photochemical technique of potentially low environmental impact. J Environ Monit 8(9):923–931PubMedGoogle Scholar
  76. Mathur MD, Vidhani S, Mehndiratta PL (2003) Bacteriophage therapy: an alternative to conventional antibiotics. J Assoc Physicians India 51:593–596PubMedGoogle Scholar
  77. Matsuoka S, Hashizume T, Kanzaki H et al (2007) Phage therapy against beta-hemolytic streptococcicosis of Japanese flounder Paralichthys olivaceus. Fish Pathol 42(4):181–189Google Scholar
  78. Matsuzaki S, Rashel M, Uchiyama J et al (2005) Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J Infect Chemother 11(5):211–219PubMedGoogle Scholar
  79. McCullers JA, Karlstrom A, Iverson AR et al (2007) Novel strategy to prevent otitis media caused by colonizing Streptococcus pneumoniae. PLoS Pathog 3:28Google Scholar
  80. Merino S, Camprubi S, Tomas JM (1990) Isolation and characterization of bacteriophage PM2 from Aeromonas hydrophila. FEMS Microbiol Lett 68(3):239–244Google Scholar
  81. Merril CR, Scholl D, Adhya S (2006) Phage therapy. In: Calendar R (ed) The Bacteriophage. Oxford University Press, New York, pp 725–741Google Scholar
  82. Mialhe E, Bachere E, Boulo V et al (1995) Future of biotechnology-based control of disease in marine invertebrates. Mol Mar Biol Biotechnol 4(4):275–283PubMedGoogle Scholar
  83. Miedzybrodzki R, Fortuna W, Weber-Dabrowska B et al (2007) Phage therapy of staphylococcal infections (including MRSA) may be less expensive than antibiotic treatment. Postepy Hig Med Dosw (Online) 61:461–465Google Scholar
  84. Miossec L, Le Guyader F, Pelletier D et al (2001) Validity of Escherichia coli, enterovirus, and F-specific RNA bacteriophages as indicators of viral shellfish contamination J Shellfish Res 20(3):1223–1227Google Scholar
  85. Miranda CD, Zemelman R (2002) Bacterial resistance to oxytetracycline in Chilean salmon farming. Aquaculture 212(1–4):31–47Google Scholar
  86. Moriarty DJW (1998) Control of luminous Vibrio species in penaeid aquaculture ponds. Aquaculture 164(1–4):351–358Google Scholar
  87. Morrison S, Rainnie DJ (2004) Bacteriophage therapy: an alternative to antibiotic therapy in aquaculture? Can Tech Rep Fish Aquat Sci 2532:23Google Scholar
  88. Munro PO, Barbour A, Birkbeck TH (1994) Comparison of the gut bacterial flora of start-feeding larval turbot reared under different conditions. J Appl Microbiol 77(5):560–566Google Scholar
  89. Munro J, Oakey J, Bromage E et al (2003) Experimental bacteriophage-mediated virulence in strains of Vibrio harveyi. Dis Aquat Org 54(3):187–194PubMedGoogle Scholar
  90. Muroga K (2001) Viral and bacterial diseases of marine fish and shellfish in Japanese hatcheries. Aquaculture 202(1–2):23–44Google Scholar
  91. Nakai T (2010) Application of bacteriophages for control of infectious diseases in aquaculture. In: Sabour PM, Griffiths MW (eds) Bacteriophages in the control of food- and waterborne pathogens. American Society for Microbiology Press, Washington, pp 257–272Google Scholar
  92. Nakai T, Park SC (2002) Bacteriophage therapy of infectious diseases in aquaculture. Res Microbiol 153(1):13–18PubMedGoogle Scholar
  93. Nakai T, Sugimoto R, Park K-H et al (1999) Protective effects of bacteriophage on experimental Lactococcus garvieae infection in yellowtail. Dis Aquat Org 37:33–41PubMedGoogle Scholar
  94. Nanni H, Bronzetti L, Fabio G et al (2000) Microbiological survey of shellfish. Ig Mod 114(2):113–127Google Scholar
  95. Nelson D, Loomis L, Fischetti VA (2001) Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc Natl Acad Sci USA 98:4107–4112PubMedGoogle Scholar
  96. Nicolas JL, Corre S, Gauthier G et al (1996) Bacterial problems associated with scallop Pecten maximus larval culture. Dis Aquat Org 27:67–76Google Scholar
  97. Nikoskelainen S, Ouwehand AC, Bylund G et al (2003) Immune enhancement in rainbow trout (Oncorhynchus mykiss) by potential probiotic bacteria (Lactobacillus rhamnosus). Fish Shellfish Immun 15(5):443–452Google Scholar
  98. Oakey HJ, Owens L (2000) A new bacteriophage, VHML, isolated from a toxin-producing strain of Vibrio harveyi in tropical Australia. J Appl Microbiol 89(4):702–709PubMedGoogle Scholar
  99. Oakey HJ, Cullen BR, Owens L (2002) The complete nucleotide sequence of the Vibrio harveyi bacteriophage VHML. J Appl Microbiol 93(6):1089–1098PubMedGoogle Scholar
  100. O’Flaherty S, Ross RP, Coffey A (2009) Bacteriophage and their lysins for elimination of infectious bacteria. FEMS Microbiol Rev 33(4):801–819PubMedGoogle Scholar
  101. Olivier G (1992) Furunculosis in the Atlantic provinces: an overview. Bull Aquac Assoc Can 92:4–10Google Scholar
  102. Oliveira J, Cunha A, Castilho F et al (2011) Microbial contamination and purification of bivalve shellfish: crucial aspects in monitoring and future perspectives—a mini-review. Food Control 22:805–816Google Scholar
  103. Park SC, Nakai T (2003) Bacteriophage control of Pseudomonas plecoglossicida infection in ayu Plecoglossus altivelis. Dis Aquat Organ 53:33–39PubMedGoogle Scholar
  104. Park K-H, Matsuoka S, Nakai T et al (1997) A virulent bacteriophage of Lactococcus garvieae (formerly Enterococcus seriolicida) isolated from yellowtail Seriola quinqueradiata. Dis Aquat Org 29(2):145–149Google Scholar
  105. Park K-H, Kato H, Nakai T et al (1998) Phage typing of Lactococcus garvieae (formerly Enterococcus seriolicida) a pathogen of cultured yellowtail. Fish Sci 64:62–64Google Scholar
  106. Park SC, Shimamura I, Fukunaga M et al (2000) Isolation of bacteriophages specific to a fish pathogen, Pseudomonas plecoglossicida, as a candidate for disease control. Appl Environ Microbiol 66(4):1416–1422PubMedGoogle Scholar
  107. Pass DA, Dybdahl R, Mannion MM (1987) Investigations into the causes of mortality of the pearl oyster, Pinctada maxima (Jamson), IN Western Australia. Aquaculture 65(2):149–169Google Scholar
  108. Payne M (2007) Towards successful aquaculture of the tropical rock lobster, Panulirus ornatus: the microbiology of larval rearing. PhD Thesis, University of QueenslandGoogle Scholar
  109. Payne RJH, Jansen VAA (2003) Pharmacokinetic principles of bacteriophage therapy. Clin Pharmacokinet 42(4):315–325PubMedGoogle Scholar
  110. Pereira C, Salvador S, Arrojado C et al (2011) Evaluating seasonal dynamics of bacterial communities in marine fish aquaculture: a preliminary study before applying phage therapy. J Environ Monit 13(4):1053–1058PubMedGoogle Scholar
  111. Perreten V (2005) Resistance in the food chain and in bacteria from animals: relevance to human infections. In: White DG, Alekshun MN, McDermott PF (eds) Frontiers in antimicrobial resistance. American Society for Microbiology, Washington, DC, pp 575Google Scholar
  112. Petty NK, Evans TJ, Fineran PC et al (2007) Biotechnological exploitation of bacteriophage research. Trends Biotechnol 25(1):7–15PubMedGoogle Scholar
  113. Phumkhachorn P, Rattanachaikunsopon P (2010) Isolation and partial characterization of a bacteriophage infecting the shrimp pathogen Vibrio harveyi. Afr J Microbiol Res 4(16):1794–1800Google Scholar
  114. Pillay TVR, Kutty MN (2005) Aquaculture: principles and practices. Blackwell Publishing, OxfordGoogle Scholar
  115. Pirisi A (2000) Phage therapy—advantages over antibiotics? Lancet 356:1418PubMedGoogle Scholar
  116. Prado S, Romalde JL, Barja JL (2010) Review of probiotics for use in bivalve hatcheries. Vet Microbiol 145(3–4):187–197PubMedGoogle Scholar
  117. Prasad Y, Arpana, Kumar D et al (2011) Lytic bacteriophages specific to Flavobacterium columnare rescue catfish, Clarias batrachus (Linn.) from columnaris disease. J Environ Biol 32:161–168Google Scholar
  118. Rashel M, Uchiyama J, Ujihara T et al (2007) Efficient elimination of multidrug-resistant Staphylococcus aureus by cloned lysin derived from bacteriophage phi MR11. J Infect Dis 196:1237–1247PubMedGoogle Scholar
  119. Riley MA, Wertz JE (2002) Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 56(1):117–137PubMedGoogle Scholar
  120. Ripp S, Miller RV (1997) The role of pseudolysogeny in bacteriophage-host interactions in a natural freshwater environment. Microbiol 143:2065–2070Google Scholar
  121. Ripp S, Miller RV (1998) Dynamics of the pseudolysogenic response in slowly growing cells of Pseudomonas aeruginosa. Microbiol 144(8):2225–2232Google Scholar
  122. Roberts Y, Nation T, Kutter E et al (2002) Isolation and characterization of bacteriophages potentially useful as a treatment for furunculosis in salmonid fishes. Abstr Gen Meet Am Soc Microbiol 103:303Google Scholar
  123. Rodgers CJ, Pringle JH, McCarthy DH et al (1981) Quantitative and qualitative studies of Aeromonas salmonicida bacteriophage. J Gen Microbiol 125(2):335–345Google Scholar
  124. Sandeep K (2006) Bacteriophage precision drug against bacterial infections. Curr Sci 90(5):631–633Google Scholar
  125. Sapkota A, Sapkota AR, Kucharski M et al (2008) Aquaculture practices and potential human health risks: current knowledge and future priorities. Environ Int 34(8):1215–1226PubMedGoogle Scholar
  126. Schöbitz RP, Bórquez PA, Costa ME et al (2006) Bacteriocins like substance production by Carnobacterium piscicola in a continuous system with three culture broths. Study of antagonism against Listeria monocytogenes on vacuum packaged salmon. Braz J Microbiol 37:52–57Google Scholar
  127. Schuch R, Nelson D, Fischetti VA (2002) A bacteriolytic agent that detects and kills Bacillus anthracis. Nat Biotechnol 418:884–888Google Scholar
  128. Scott AE, Timms AR, Connerton PL et al (2007) Genome dynamics of Campylobacter jejuni in response to bacteriophage predation. PLoS Pathog 3(8):1142–1151PubMedGoogle Scholar
  129. Shehane SD, Sizemore RK (2002) Isolation and preliminary characterization of bacteriocins produced by Vibrio vulnificus. J Appl Microbiol 92(2):322–328PubMedGoogle Scholar
  130. Shivu MM, Rajeeva BC, Girisha SK et al (2007) Molecular characterization of Vibrio harveyi bacteriophages isolated from aquaculture environments along the coast of India. Environ Microbiol 9(2):322–331PubMedGoogle Scholar
  131. Sinton LW, Finlay RK, Lynch PA (1999) Sunlight inactivation of fecal bacteriophages and bacteria in sewage-polluted seawater. Appl Environ Microbiol 65(8):3605–3613PubMedGoogle Scholar
  132. Skjermo J, Vadstein O (1999) Techniques for microbial control in the intensive rearing of marine larvae. Aquaculture 177(1–4):333–343Google Scholar
  133. Skjermo J, Salvesen I, Øie G et al (1997) Microbially matured water: a technique for selection of a non-opportunistic bacterial flora in water that may improve performance of marine larvae. Aquac Int 5(1):13–28Google Scholar
  134. Skurnik M, Strauch E (2006) Phage therapy: facts and fiction. Int J Med Microbiol 296(1):5–14PubMedGoogle Scholar
  135. Srinivasan P, Ramasamy P, Brennan GP et al (2007) Inhibitory effects of bacteriophages on the growth of Vibrio sp. pathogens of shrimp in the Indian aquaculture environment. Asian J Anim Vet Adv 2(4):166–183Google Scholar
  136. Stenholm AR, Dalsgaard I, Middelboe M (2008) Isolation and characterization of bacteriophages infecting the fish pathogen Flavobacterium psychrophilum. Appl Environ Microbiol 74(13):4070–4078PubMedGoogle Scholar
  137. Stevenson RMW, Airdrie DW (1984) Isolation of Yersinia ruckeri bacteriophages. Appl Environ Microbiol 47(6):1201–1205PubMedGoogle Scholar
  138. Sugumar G, Nakai T, Hirata Y et al (1998) Vibrio splendidus biovar II as the causative agent of bacillary necrosis of Japanese oyster Crassostrea gigas larvae. Dis Aquat Org 33:111–118PubMedGoogle Scholar
  139. Sulakvelidze A, Morris JG Jr (2001) Bacteriophages as therapeutic agents. Ann Med 33(8):507–509PubMedGoogle Scholar
  140. Sulakvelidze A, Alavidze Z, Morris JG Jr (2001) Bacteriophage therapy. Antimicrob Agents Chemother 45(3):649–659PubMedGoogle Scholar
  141. Summers WC (2001) Bacteriophage therapy. Annu Rev Microbiol 55(1):437–451PubMedGoogle Scholar
  142. Tan Y-T, Tillett DJ, McKay IA (2000) Molecular strategies for overcoming antibiotic resistance in bacteria. Mol Med Today 6(8):309–314PubMedGoogle Scholar
  143. Taylor PW, Stapleton PD, Paul Luzio J (2002) New ways to treat bacterial infections. Drug Discov Today 7(21):1086–1091PubMedGoogle Scholar
  144. Tendencia EA (2007) Polyculture of green mussels, brown mussels and oysters with shrimp control luminous bacterial disease in a simulated culture system. Aquaculture 272(1–4):188–191Google Scholar
  145. Tendencia EA, de la Peña LD (2001) Antibiotic resistance of bacteria from shrimp ponds. Aquaculture 195(3–4):193–204Google Scholar
  146. Tendencia EA, de la Peña M (2003) Investigation of some components of the greenwater system which makes it effective in the initial control of luminous bacteria. Aquaculture 218(1–4):115–119Google Scholar
  147. Thiel K (2004) Old dogma, new tricks-21st century phage therapy. Nat Biotechnol 22(1):31–36PubMedGoogle Scholar
  148. Vadstein O (1997) The use of immunostimulation in marine larviculture: possibilities and challenges. Aquaculture 155(1–4):401–417Google Scholar
  149. Verner-Jeffreys DW, Algoet M, Pond MJ et al (2007) Furunculosis in Atlantic salmon (Salmo salar L.) is not readily controllable by bacteriophage therapy. Aquaculture 270(1–4):475–484Google Scholar
  150. Verschuere L, Rombaut G, Sorgeloos P et al (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 64(4):655–671PubMedGoogle Scholar
  151. Vinod MG, Shivu MM, Umesha KR et al (2006) Isolation of Vibrio harveyi bacteriophage with a potential for biocontrol of luminous vibriosis in hatchery environments. Aquaculture 255(1–4):117–124Google Scholar
  152. Wagner PL, Waldor MK (2002) Bacteriophage control of bacterial virulence. Infect Immun 70(8):3985–3993PubMedGoogle Scholar
  153. Walakira JK, Carrias AA, Hossain MJ et al (2008) Identification and characterization of bacteriophages specific to the catfish pathogen, Edwardsiella ictaluri. J Appl Microbiol 105(6):2133–2142PubMedGoogle Scholar
  154. Weld RJ, Butts C, Heinemann JA (2004) Models of phage growth and their applicability to phage therapy. J Theor Biol 227(1):1–11PubMedGoogle Scholar
  155. Wiklund T, Dalsgaard I (1998) Occurrence and significance of atypical Aeromonas salmonicida in non-salmonid and salmonid fish species: a review. Dis Aquat Org 32(1):49–69PubMedGoogle Scholar
  156. Wilhelm SW, Weinbauer MG, Suttle CA et al (1998) The role of sunlight in the removal and repair of viruses in the sea. Limnol Oceanogr 43(4):586–592Google Scholar
  157. Withey S, Cartmell E, Avery LM et al (2005) Bacteriophages—potential for application in wastewater treatment processes. Sci Total Environ 339(1–3):1–18PubMedGoogle Scholar
  158. Wommack KE, Hill RT, Muller TA et al (1996) Effects of sunlight on bacteriophage viability and structure. Appl Environ Microbiol 62(4):1336–1341PubMedGoogle Scholar
  159. Wu JL, Chao WJ (1982) Isolation and application of a new bacteriophage, ET-1, which infect Edwardsiella tarda, the pathogen of edwardsiellosis. Rep Fish Dis Res IV(8):8–17Google Scholar
  160. Wu JL, Lin HM, Jan L et al (1981) Biological control of fish bacterial pathogen, Aeromonas hydrophila, by bacteriophage AH1. Fish Pathol 15:271–276Google Scholar
  161. Yamamoto A, Maegawa T (2008) Phage typing of Edwardsiella tarda from eel farm and diseased eel. Aquac Sci 56(4):611–612Google Scholar
  162. Yoong P, Schuch R, Nelson D et al (2004) Identification of a broadly active phage lytic enzyme with lethal activity against antibiotic-resistant Enterococcus faecalis and Enterococcus faecium. J Bacteriol 186:4808–4812PubMedGoogle Scholar
  163. Yoong P, Schuch R, Nelson D et al (2006) PlyPH, a bacteriolytic enzyme with a broad pH range of activity and lytic action against Bacillus anthracis. J Bacteriol 188:2711–2714PubMedGoogle Scholar
  164. Yuksel SA, Thompson KD, Ellis AE et al (2001) Purification of Piscirickettsia salmonis and associated phage particles. Dis Aquat Org 44(3):231–235PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • J. Oliveira
    • 1
    Email author
  • F. Castilho
    • 2
  • A. Cunha
    • 1
  • M. J. Pereira
    • 1
  1. 1.Departamento de Biologia e CESAMUniversidade de AveiroAveiroPortugal
  2. 2.Instituto Nacional de Recursos BiológicosI. P./IPIMAR MatosinhosMatosinhosPortugal

Personalised recommendations